Abstract Title:

Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway.

Abstract Source:

Mol Neurobiol. 2015 May 12. Epub 2015 May 12. PMID: 25963729

Abstract Author(s):

Shashi Kant Tiwari, Swati Agarwal, Anurag Tripathi, Rajnish Kumar Chaturvedi

Article Affiliation:

Shashi Kant Tiwari

Abstract:

Bisphenol A (BPA) is an environmental xenoestrogenic endocrine disruptor, utilized for production of consumer products, and exerts adverse effects on the developing nervous system. Recently, we found that BPA impairs the finely tuned dynamic processes of neurogenesis (generation of new neurons) in the hippocampus of the developing rat brain. Curcumin is a natural polyphenolic compound, which provides neuroprotection against various environmental neurotoxicants and in the cellular and animal models of neurodegenerative disorders. Here, we have assessed the neuroprotective efficacy of curcumin against BPA-mediated reduced neurogenesis and the underlying cellular and molecular mechanism(s). Both in vitro and in vivo studies showed that curcumin protects against BPA-induced hippocampal neurotoxicity. Curcumin protects against BPA-mediated reduced neural stem cells (NSC) proliferation and neuronal differentiation and enhanced neurodegeneration. Curcumin also enhances the expression/levels of neurogenic and the Wnt pathway genes/proteins, which were reduced due to BPA exposure in the hippocampus. Curcumin-mediated neuroprotection against BPA-induced neurotoxicity involved activation of the Wnt/β-catenin signaling pathway, which was confirmed by the use of Wnt specific activators (LiCl and GSK-3β siRNA) and inhibitor (Dkk-1). BPA-mediated increased β-catenin phosphorylation, decreased GSK-3β levels, and β-catenin nuclear translocation were significantly reversed by curcumin, leadingto enhanced neurogenesis. Curcumin-induced protective effects on neurogenesis were blocked by Dkk-1 in NSC culture treated with BPA. Curcumin-mediated enhanced neurogenesis was correlated well with improved learning and memory in BPA-treated rats. Overall, our results conclude that curcumin providesneuroprotection against BPA-mediated impaired neurogenesis via activation of the Wnt/β-catenin signaling pathway.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.