Abstract Title:

Upregulation of cugbp2 increases response of pancreatic cancer cells to chemotherapy.

Abstract Source:

Langenbecks Arch Surg. 2015 Dec 21. Epub 2015 Dec 21. PMID: 26691217

Abstract Author(s):

Aldona Jakstaite, Aurelija Maziukiene, Giedre Silkuniene, Kristina Kmieliute, Albertas Dauksa, Saulius Paskauskas, Antanas Gulbinas, Zilvinas Dambrauskas

Article Affiliation:

Aldona Jakstaite


PURPOSE: Altered expression and/or function of ribosomal RNA (rRNA)-binding proteins CUGBP2/CELF2 might influence post-transcriptional regulation of the HO-1- and COX-2-mediated cytoprotective pathways and represents an important therapeutic target. The aim of this study was to assess the effects of CUGBP2-mediated post-transcriptional regulation of COX-2 and HO-1 in pancreatic cancer cells in regard of response to gemcitabine (GEM) treatment.

METHODS: Expression of CUGBP2, COX-2, and HO-1 was evaluated using qRT-PCR and Western blot methods. Cell viability after treatment with GEM and/or curcumin and siCUGBP2 was evaluated using MTT and crystal violet tests. RNA immunoprecipitation analysis was used to confirm COX-2 and HO-1 post-transcriptional regulation by CUGBP2 protein.

RESULTS: CUGBP2 expression at the messenger RNA (mRNA) level was 2.2-fold lower (p = 0.007), but HO-1 and COX-2 expression was increased 6.9- (p = 0.023) and 2.3- (p = 0.046) fold in pancreatic cancer tissues. The median survival of patients with low CUGBP2 expression from the lowest tercile was 13.8 months. The median survival of patients in terciles of middle and high CUGBP2 expression levels was 21.9 month (p = 0.123). Induction of CUGBP2 expression by curcumin resulted in the downregulation of HO-1 and COX-2 and strongly sensitized tumor cells to GEM treatment. However, CUGBP2 silencing upregulated HO-1 and COX-2 protein expression and had a high effect on cells viability.

CONCLUSION: Decreased activity of CUGBP2 could be associated with high chemoresistance and early dissemination of pancreatic cancer through the HO-1- and COX-2-mediated cytoprotective and carcinogenesis pathways. Curcumin significantly increased the effectiveness of GEM treatment in vitro via the CUGBP2-mediated post-transcriptional regulation pathway.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.