Abstract Title:

Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity.

Abstract Source:

J Immunotoxicol. 2007 Apr;4(2):85-96. PMID: 15582996

Abstract Author(s):

Allan L Berger, Christoph O Randak, Lynda S Ostedgaard, Philip H Karp, Daniel W Vermeer, Michael J Welsh

Article Affiliation:

Department of Internal Medicine, Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.

Abstract:

Compounds that enhance either the function or biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel may be of value in developing new treatments for cystic fibrosis (CF). Previous studies suggested that the herbal extract curcumin might affect the processing of a common CF mutant, CFTR-DeltaF508. Here, we tested the hypothesis that curcumin influences channel function. Curcumin increased CFTR channel activity in excised, inside-out membrane patches by reducing channel closed time and prolonging the time channels remained open. Stimulation was dose-dependent, reversible, and greater than that observed with genistein, another compound that stimulates CFTR. Curcumin-dependent stimulation required phosphorylated channels and the presence of ATP. We found that curcumin increased the activity of both wild-type and DeltaF508 channels. Adding curcumin also increased Cl(-) transport in differentiated non-CF airway epithelia but not in CF epithelia. These results suggest that curcumin may directly stimulate CFTR Cl(-) channels.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.