n/a
Abstract Title:

The cytotoxic concentration of rosmarinic acid increases MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells.

Abstract Source:

Hum Exp Toxicol. 2019 Dec 26:960327119896614. Epub 2019 Dec 26. PMID: 31876192

Abstract Author(s):

G S Ozgun, E Ozgun

Article Affiliation:

G S Ozgun

Abstract:

Rosmarinic acid (RA) is a natural polyphenolic compound derived from many common herbal plants. Although it is known that RA has many important biological activities, its effect on proteasome inhibitor-induced changes in cancer treatment or its effects on any experimental proteasome inhibition model is unknown. The aim of the study was to investigate the effect of RA on MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. HepG2 cells were treated with 10, 100, and 1000µM RA in the presence of MG132 for 24 h; 10 and 100 µM RA did not affect but 1000 µM RA decreased cell viability in HepG2 cells. MG132 caused a significant decrease in cell viability and phosphorylation of mammalian target of rapamycin and a significant increase in levels of polyubiquitinated protein, microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II), heat shock protein 70 (HSP70), binding immunoglobulin protein (BiP), activating transcription factor 4 (ATF4), protein carbonyl, and cleaved poly(adenosine diphosphate-ribose) polymerase 1 (PARP1); 10 and 100 µM RA did not significantly change these effects of MG132 in HepG2 cells; 1000 µM RA caused a significant decrease in cell viability and a significant increase in polyubiquitinated protein, LC3B-II, HSP70, BiP, ATF4, protein carbonyl, and cleaved PARP1 levels in MG132-treated cells. Our study showed that only 1000µM RA increased MG132-induced cytotoxicity, proteasome inhibition, autophagy, cellular stresses, and apoptosis in HepG2 cells. According to our results, cytotoxic concentration of RA can potentiate the effects of MG132 in hepatocellular carcinoma treatment.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.