n/a
Article Publish Status: FREE
Abstract Title:

Naringenin regulates gut microbiota and SIRT1/ PGC-1ɑ signaling pathway in rats with letrozole-induced polycystic ovary syndrome.

Abstract Source:

Biomed Pharmacother. 2022 Jun 17 ;153:113286. Epub 2022 Jun 17. PMID: 35724506

Abstract Author(s):

Yan-Xiang Wu, Xiu-Yan Yang, Bao-Sheng Han, Yuan-Yuan Hu, Tian An, Bo-Han Lv, Juan Lian, Ting-Ye Wang, Xue-Li Bao, Lin Gao, Guang-Jian Jiang

Article Affiliation:

Yan-Xiang Wu

Abstract:

PURPOSE: To evaluate the effect of naringenin on improving PCOS and explore the mechanism.

METHODS: Firstly, we carried out differential gene expression analysis from transcriptome sequencing data of human oocyte to screen the KEGG pathway, then the PCOS-like rat model was induced by letrozole. They were randomly divided into four groups: Normal group (N), PCOS group (P), Diane-35 group (D), and Naringenin group (Nar). The changes of estrus cycle, body weight, ovarian function, serum hormone levels, glucose metabolism, along with the expression of SIRT1, PGC-1ɑ, claudin-1 and occludin of the ovary and colon were investigated. Furthermore, the composition of the gut microbiome of fecal was tested.

RESULTS: By searching the KEGG pathway in target genes, we found that at least 15 KEGG pathways are significantly enriched in the ovarian function, such as AMPK signaling pathway, insulin secretion, and ovarian steroidogenesis. Interestingly, naringenin supplementation significantly reduced body weight, ameliorated hormone levels, improved insulin resistance, and mitigated pathological changes in ovarian tissue, up-regulated the expression of PGC-1ɑ, SIRT1, occludin and claudin-1 in colon. In addition, we also found that the abundance of Prevotella and Gemella was down-regulated, while the abundance of Butyricimonas, Lachnospira, Parabacteroides, Butyricicoccus, Streptococcus, Coprococcus was up-regulated.

CONCLUSION: Our data suggest that naringenin exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota and SIRT1/PGC-1ɑ signaling pathway. Our research may provide a new perspective for the treatment of PCOS and related diseases.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.