Abstract Title:

The role of oxidative stress in developmental and reproductive toxicity of tamoxifen.

Abstract Source:

Life Sci. 2001 Mar 2;68(15):1735-49. PMID: 11270620

Abstract Author(s):

G Pagano, A de Biase, I B Deeva, P Degan, Y K Doronin, M Iaccarino, R Oral, N M Trieff, M Warnau, L G Korkina

Article Affiliation:

Italian National Cancer Institute, G. Pascale Foundation, Naples. [email protected]


The antiestrogen tamoxifen (TAM) is widely used as a drug against breast cancer and is currently being tested as a chemopreventive agent. However, a number of studies showed genotoxic and carcinogenic effects of TAM. These effects are thought to be related to oxygen radical overproduction which occurs during TAM metabolic activation. There is no evidence, thus far, on TAM toxicity to embryos and gametes. The present study was designed to elucidate the mechanisms of TAM-induced developmental, reproductive and cytogenetic toxicity towards sea urchin (SU) embryos with regard to the possibility of TAM-initiated oxidative stress. Embryo cultures from SU were subjected to long-term (throughout embryogenesis) or short-term (two hours) incubation with TAM at concentrations from 10(-8) to 10(-5) M. The experiments on TAM-induced toxicity to gametes were carried out with SU sperm, or unfertilized eggs, suspended in TAM (10(-8) to 10(-6) M). To assess the effects of TAM to embryos or to gametes, developmental defects, embryonic mortality, fertilization success, and cytogenetic abnormalities were scored. Oxidative damage to DNA and lipids was detected by measurements of 8OHdG levels and lipid peroxidation, respectively. Reactive oxygen species (ROS) production by eggs and embryos was recorded by luminol-dependent chemiluminescence (LDCL) and cytochrome c reduction methods. The changes in activities of SU superoxide dismutase (SOD) and catalase were also evaluated. TAM exerted: a) early embryonic mortality to exposed embryos and to the offspring of exposed eggs; b) developmental defects to the offspring of exposed sperm; c) decrease in sperm fertilization success, and d) cytogenetic effects in the offspring of exposed sperm or eggs. These morphological effects corresponded to the state of oxidative stress in SU embryos (increased oxidative damage to DNA and lipids and induction of antioxidant enzymes). Since TAM did increase significantly ROS production by embryos, it is suggested that TAM may be metabolically activated by SU embryonic oxidases and peroxidases, which in turn could be induced by TAM. The present study provides further support to the utilization of the SU system as a useful model to help elucidate mechanisms of chemical teratogenesis and carcinogenesis.

Study Type : Animal Study
Additional Links
Problem Substances : Tamoxifen : CK(401) : AC(68)
Adverse Pharmacological Actions : Oxidant : CK(595) : AC(235)

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.