Abstract Title:

Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats.

Abstract Source:

Environ Toxicol Chem. 2010 Dec;29(12):2840-4. Epub 2010 Oct 15. PMID: 20954233

Abstract Author(s):

Katie B Paul, Joan M Hedge, Michael J Devito, Kevin M Crofton

Article Affiliation:

University of North Carolina, Chapel Hill, North Carolina, USA.


Disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. The present study tested the hypothesis that perinatal triclosan exposure of dams decreases thyroxine in dams and offspring prior to weaning. Pregnant Long-Evans rats received triclosan by oral gavage (0-300 mg/kg/d) in corn oil from gestational day (GD)6 through postnatal day (PND)21. Serum was obtained from pups on PND4, 14, and 21, and from dams on PND22. Serum thyroxine (T4) was reduced 31% in dams on PND22. In pups, a unique pattern of hypothyroxinemia was observed; serum T4 decreased 27% in PND4 pups with no significant reduction observed on PND14 or PND21. Comparable reductions of approximately 30% in serum T4 at 300 mg/kg/d for dams and PND4 neonates and a lack of effect at PND14 and PND21 suggest that toxicokinetic or toxicodynamic factors may have contributed to a reduced exposure or a reduced toxicological response during the lactation period.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.