n/a
Abstract Title:

Protective Effects of Diallyl Sulfide Against Ethanol-Induced Injury in Rat Adipose Tissue and Primary Human Adipocytes.

Abstract Source:

Alcohol Clin Exp Res. 2017 Apr 17. Epub 2017 Apr 17. PMID: 28414868

Abstract Author(s):

Venkata Harini Kema, Imran Khan, Reshma Jamal, Sandeep Kumar Vishwakarma, Chandrakala Lakki Reddy, Kirti Parwani, Farhin Patel, Dhara Patel, Aleem A Khan, Palash Mandal

Article Affiliation:

Venkata Harini Kema

Abstract:

BACKGROUND: Alcohol consumption is the fourth leading cause of death and disability worldwide. Several cellular pathways contribute to alcohol-mediated tissue injury. Adipose tissue apart from functioning as an endocrine organ secretes several hormones and cytokines known as adipokines that are known to play a significant role in alcohol-induced tissue damage. This study was designed to test the efficacy of diallyl sulfide (DAS) in regulating the alcohol-induced outcomes on adipose tissue.

METHODS: Male Wistar rats were fed with 36% Lieber-DeCarli liquid diet containing ethanol (EtOH) for 4 weeks. Control rats were pair-fed with isocaloric diet containing maltodextrin instead of EtOH. During the last week of feeding protocol, the EtOH-fed rat group was given 200 mg/kg body weight of DAS through diet. We also studied DAS effect on isolated human primary adipocytes. Viability of humanprimary adipocytes on DAS treatment was assessed by MTT assay. Malondialdehyde (MDA), a marker of oxidative stress, was measured by HPLC and the thiobarbituric acid method. Expression of inflammatory genes and lipogenic genes was studied by qRT-PCR and Western blotting. Serum inflammatory gene expression was studied by ELISA.

RESULTS: Our study results showed that DAS could alleviate EtOH-induced expression levels of proinflammatory and endoplasmic reticulum (ER) stress genes and improve adipose tissue mass and adipocyte morphology in male Wistar rats fed Lieber-DeCarli diet containing 6% EtOH. Further, we showed that DAS reduced the expression of lipogenic genes and improved lipid accumulation and adipocyte mass in human primary adipocytes treated with EtOH. Subsequently, we also showed that oxidative stress, as measured by the changes in MDA levels, was reduced in both male Wistar rats and human primary adipocytes treated with EtOH plus DAS.

CONCLUSIONS: Our study results prove that DAS is effective in ameliorating EtOH-induced damage to adipose tissue as evidenced by the reduction brought about by DAS in oxidative stress, ER stress, and proinflammatory gene expression levels. DAS treatment also regulated lipogenic gene expression levels, thereby reducing free fatty acid release. In conclusion, this study has clinical implications with respect to alcohol-induced adipose tissue injury among alcohol users.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.