n/a
Article Publish Status: FREE
Abstract Title:

Diesel Exhaust Induces Mitochondrial Dysfunction, Hyperlipidemia, and Liver Steatosis.

Abstract Source:

Arterioscler Thromb Vasc Biol. 2019 Sep ;39(9):1776-1786. Epub 2019 Jul 25. PMID: 31340670

Abstract Author(s):

Fen Yin, Rajat Gupta, Laurent Vergnes, Will S Driscoll, Jerry Ricks, Gajalakshmi Ramanathan, James A Stewart, Diana M Shih, Kym F Faull, Simon W Beaven, Aldons J Lusis, Karen Reue, Michael E Rosenfeld, Jesús A Araujo

Article Affiliation:

Fen Yin

Abstract:

OBJECTIVE: Air pollution is associated with increased cardiovascular morbidity and mortality, as well as dyslipidemia and metabolic syndrome. Our goal was to dissect the mechanisms involved. Approach and Results: We assessed the effects of exposure to air pollution on lipid metabolism in mice through assessment of plasma lipids and lipoproteins, oxidized fatty acids 9-HODE (9-hydroxyoctadecadienoic) and 13-HODE (13-hydroxyoctadecadienoic), lipid, and carbohydrate metabolism. Findings were corroborated, and mechanisms were further assessed in HepG2 hepatocytes in culture. ApoE knockout mice exposed to inhaled diesel exhaust (DE, 6 h/d, 5 days/wk for 16 weeks) exhibited elevated plasma cholesterol and triglyceride levels, increased hepatic triglyceride content, and higher hepatic levels of 9-HODE and 13-HODE, as compared to control mice exposed to filtered air. A direct effect of DE exposure on hepatocytes was demonstrated by treatment of HepG2 cells with a methanol extract of DE particles followed by loading with oleic acid. As observed in vivo, this led to increased triglyceride content and significant downregulation of ACAD9 mRNA expression. Treatment of HepG2 cells with DE particles and oleic acid did not alter de novo lipogenesis but inhibited total, mitochondrial, and ATP-linked oxygen consumption rate, indicative of mitochondrial dysfunction. Treatment of isolated mitochondria, prepared from mouse liver, with DE particles and oleic acid also inhibited mitochondrial complex activity andβ-oxidation.

CONCLUSIONS: DE exposure leads to dyslipidemia and liver steatosis in ApoE knockout mice, likely due to mitochondrial dysfunction and decreased lipid catabolism.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.