Abstract Title:

Dietary Tomato Powder Inhibits High-Fat Diet-Promoted Hepatocellular Carcinoma with Alteration of Gut Microbiota in Mice Lacking Carotenoid Cleavage Enzymes.

Abstract Source:

Cancer Prev Res (Phila). 2018 12 ;11(12):797-810. Epub 2018 Nov 16. PMID: 30446518

Abstract Author(s):

Hui Xia, Chun Liu, Cheng-Chung Li, Maobin Fu, Shingo Takahashi, Kang-Quan Hu, Koichi Aizawa, Suganuma Hiroyuki, Guojun Wu, Liping Zhao, Xiang-Dong Wang

Article Affiliation:

Hui Xia


Both incidence and death rate due to liver cancer have increased in the United States. Higher consumption of lycopene-rich tomato and tomato products is associated with a decreased risk of cancers.β-Carotene-15, 15'-oxygenase (BCO1), and β-carotene-9', 10'-oxygenase (BCO2) cleave lycopene to produce bioactive apo-lycopenoids. Although BCO1/BCO2 polymorphisms affect human and animal lycopene levels, whether dietary tomato consumption can inhibit high-fat diet (HFD)-promoted hepatocellular carcinoma (HCC) development and affect gut microbiota in the absence of BCO1/BCO2 is unclear. BCO1/BCO2 double knockout mice were initiated with a hepatic carcinogen (diethylnitrosamine) at 2 weeks of age. At 6 weeks of age, the mice were randomly assigned to an HFD (60% of energy as fat) with or without tomato powder (TP) feeding for 24 weeks. Results showed that TP feeding significantly decreased HCC development (67%, 83%, and 95% reduction in incidence, multiplicity, and tumor volume, respectively,<0.05). Protective effects of TP feeding were associated with (1) decreased hepatic inflammatory foci development and mRNA expression of proinflammatory biomarkers (IL1β, IL6, IL12α, monocyte chemoattractant protein-1, and inducible NO synthase); (2) increased mRNA expression of deacetylase sirtuin 1 and nicotinamide phosphoribosyltransferase involving NADproduction; and (3) increased hepatic circadian clock genes (circadian locomotor output cycles kaput, period 2, and cryptochrome-2, Wee1). Furthermore, TP feeding increased gut microbial richness and diversity, and significantly decreased the relative abundance of the genusand, respectively. The present study demonstrates that dietary tomato feeding independent of carotenoid cleavage enzymes prevents HFD-induced inflammation with potential modulating gut microbiota and inhibits HFD-promoted HCC development.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.