n/a
Article Publish Status: FREE
Abstract Title:

Diosgenin restores Aβ-induced axonal degeneration by reducing the expression of heat shock cognate 70 (HSC70).

Abstract Source:

Sci Rep. 2018 Aug 3 ;8(1):11707. Epub 2018 Aug 3. PMID: 30076345

Abstract Author(s):

Ximeng Yang, Chihiro Tohda

Article Affiliation:

Ximeng Yang

Abstract:

We previously found diosgenin, an herbal drug-derived steroid sapogenin, to be remarkably effective at restoring Aβ-induced axonal degeneration and improving memory function in model of Alzheimer's disease (AD), 5XFAD mouse. In this study, we investigated the downstream signaling of diosgenin and explored new therapeutic targets in AD. We showed that the expression of heat shock cognate (HSC) 70 was increasedin Aβ-treated neurons and in 5XFAD mice but was decreased by diosgenin treatment. In addition, knockdown of HSC70 significantly promoted axonal growth in neurons. As an association molecule of HSC70 in neurons, α-tubulin was detected by immunoprecipitation. After Aβ treatment, α-tubulin expression was greatly reduced in the degenerated axons, suggesting that a decline in α-tubulin may be one of the factors which correlates with axonal disruption in AD pathology. We hypothesized that the degradation of α-tubulin is triggered by the chaperone activity of HSC70. However, diosgenin significantly normalized the α-tubulin level, a potentially critical process for axonal formation. Our study indicated that reducing the HSC70 level is a new possible therapeutic target of axonal regeneration in AD.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.