n/a
Abstract Title:

The Effect of Topical Administration of an Ointment Prepared From Trifolium repens Hydroethanolic Extract on the Acceleration of Excisional Cutaneous Wound Healing.

Abstract Source:

Wounds. 2020 Nov ;32(11):309-318. PMID: 33465043

Abstract Author(s):

Sarah W Manning, David A Humphrey, William R Shillinglaw, Eric Crawford, Gaurav Pranami, Ankit Agarwal, Michael J Schurr

Article Affiliation:

Sarah W Manning

Abstract:

OBJECTIVE: The goal of this prospective clinical study was to assess the effectiveness of a novel bioresorbable polymeric matrix impregnated with ionic and metallic silver as a primary wound contact dressing in healing stagnant or deteriorating chronic wounds.

MATERIALS AND METHODS: Thirty-two patients with a total of 35 chronic wounds undergoing treatment at the Wound Healing and Hyperbaric Center at Mission Hospital were recruited under a protocol approved by the institutional review board. The wounds included venous stasis ulcers, diabetic foot ulcers, postoperative surgical wounds, burn wounds, and chronic, nonpressure lower extremity ulcers. At baseline, all wounds were nonhealing (ie, stagnant or deteriorating) for a median of 39 weeks (range, 3-137 weeks) and suspected of persistent microbial colonization that had not responded to traditional antimicrobial products and/or antibiotics. The aforementioned matrix was applied to wounds once every 3 days and covered with a secondary dressing. Previously prescribed protocols of care, such as debridement or compression wraps, were continued, but prior antimicrobial dressings or antibiotics were replaced with the matrix. Wound assessments at 3 weeks and 12 weeks post intervention are reported.

RESULTS: Three patients were excluded due to patients lost to follow-up after initial application. At 3 weeks, 72% of wounds (22/32) had significantly improved healing with an average wound area reduction of 66%. By 12 weeks, 91% of wounds (29/32) either healed completely (ie, fully reepithelialized) or improved significantly with an average wound area reduction of 73%. The matrix was well tolerated; no patient reported discomfort with the application of the matrix.

CONCLUSIONS: The micrometer-thick bioresorbable matrix presents a new form factor to wound management, conforming intimately to the underlying wound bed to exert localized and sustained antimicrobial action of noncytotoxic levels of silver. The application of the matrix on the wound surface in protocols of care was safe and well tolerated, and it facilitated improvements in healing of a majority of the stagnant or deteriorating complex chronic wounds.

Study Type : Animal Study
Additional Links
Pharmacological Actions : Antimicrobial : CK(776) : AC(352)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.