Article Publish Status: FREE
Abstract Title:

EGCG Nanoparticles Attenuate Aluminum Chloride Induced Neurobehavioral Deficits, Beta Amyloid and Tau Pathology in a Rat Model of Alzheimer's Disease.

Abstract Source:

Front Aging Neurosci. 2018 ;10:244. Epub 2018 Aug 13. PMID: 30150930

Abstract Author(s):

Neha Atulkumar Singh, Vaishali Bhardwaj, Chandrika Ravi, Nithya Ramesh, Abul Kalam Azad Mandal, Zaved Ahmed Khan

Article Affiliation:

Neha Atulkumar Singh


: Alzheimer's disease (AD) is a neurodegenerative pathology characterized by the presence of neuritic plaques and neurofibrillary tangles. Aluminum has been reported to play an important role in the etiology and pathogenesis of this disease. Hence, the present study aimed to evaluate the neuroprotective role of epigallocatechin-gallate (EGCG) loaded nanoparticles (nanoEGCG) against aluminum chloride (AlCl) induced neurobehavioral and pathological changes in AD induced rats.: 100 mg/kg body weight AlClwas administered orally for 60 days, which was followed by 10 mg/kg body weight free EGCG and nanoEGCG treatment for 30 days. Morris water maze, open field and novel object recognition tests were employed for neurobehavioral assessment of the rats. This was followed by histopathological assessment of the cortex and the hippocampus in the rat brain. For further validation biochemical, immunohistochemistry and western blot assays were carried out.: Aluminum exposure reduced the exploratory and locomotor activities in open field and significantly reduced the memory and learning curve of rats in Morris water maze and novel object recognition tests. These neurobehavioral impairments were significantly attenuated in nanoEGCG treated rats. Histopathological assessment of the cortex and hippocampus of AlClinduced rat brains showed the presence of both neuritic plaques and neurofibrillary tangles. In nanoEGCG treated rats this pathology was absent. Significant increase in biochemical, immunohistochemical and protein levels was noted in AlClinduced rats. While these levels were greatly reduced in nanoEGCG treated rats.: In conclusion, this study strengthens the hypothesis that EGCG nanoparticles can reverse memory loss, neuritic plaque and neurofibrillary tangles formation.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.