Article Publish Status: FREE
Abstract Title:

Electroacupuncture Upregulated Ghrelin in Rats with Functional Dyspepsia via AMPK/TSC2/Rheb-Mediated mTOR Inhibition.

Abstract Source:

Dig Dis Sci. 2019 Dec 21. Epub 2019 Dec 21. PMID: 31863340

Abstract Author(s):

Lei Tang, Yi Zeng, Lei Li, Jingjing Wang, Duo Peng, Ting Zhang, Hongxing Zhang, Xue An

Article Affiliation:

Lei Tang


BACKGROUND: Gastrointestinal motility disorder is an important pathological basis for functional dyspepsia (FD). Epigastric ache and discomfort are the main symptoms of FD, and ghrelin deficiency is closely related to the occurrence and development of FD. While electroacupuncture (EA) alleviated the symptoms of FD patients and improved their quality of life, there is a lack of sufficient mechanistic evidence to support these beneficial effects.

METHODS: An in vivo FD model was established in wild-type and mammalian target of rapamycin (mTOR) knockout (-/-) rats. FD rats were subjected to EA with or without mTOR agonists or inhibitors. Gastric emptying and intestinal propulsion were assessed, and pathological changes in the hypothalamus, gastric antrum, and small intestine were examined histologically. In addition, ghrelin expression and AMPK/TSC2/Rheb/mTOR activation were detected by quantitative reverse transcription polymerase chain reaction and western blot.

RESULTS: EA alone or in combination with mTOR inhibitors improved gastrointestinal function in FD rats by increasing the rates of intestinal propulsion and gastric emptying, and pathological changes in the hypothalamus, gastric antrum, and small intestine were alleviated. This may be related to the significant upregulation of ghrelin expression and the effective activation of the AMPK/TSC2/Rheb/mTOR signaling pathway. Interestingly, EA also improved gastrointestinal function and ghrelin expression in mTOR (-/-) KO FD rats.

CONCLUSION: Altering the level of ghrelin by regulating AMPK/TSC2/Rheb-mediated mTOR inhibition is an important way through which EA treats FD. The complex EA-mediated regulatory mechanisms of the brain-gut axis still require further exploration.

Study Type : Animal Study
Additional Links

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.