n/a
Article Publish Status: FREE
Abstract Title:

β-elemene inhibits stemness, promotes differentiation and impairs chemoresistance to temozolomide in glioblastoma stem-like cells.

Abstract Source:

Int J Oncol. 2014 Aug ;45(2):699-709. Epub 2014 May 19. PMID: 24841897

Abstract Author(s):

Ting-Zhun Zhu, Xiao-Ming Li, Li-Han Luo, Zhen-Quan Song, Xu Gao, Zhi-Qing Li, Jing-Yuan Su, Guo-Biao Liang

Article Affiliation:

Ting-Zhun Zhu

Abstract:

Accumulating evidence indicates that glioblastoma stem-like cells (GSCs) are key factors in tumour development, recurrence and chemoresistance. The impairment of stemness and the enhancement of differentiation contributes to the weakening of radiation and chemotherapy resistance of GSCs. We previously found thatβ-elemene was an effective anti-glioblastoma agent and chemosensitizer. In this study, we examined the distribution of CD133(+) cells in human glioblastoma tissues by immunohistochemistry. Following treatment with β-elemene, the formation of GSC spheres was investigated by manual counting, the proliferation of GSCs was measured with a Cell Counting Kit-8 (CCK-8) assay, and the dispersion of GSC spheres was observed with an inverted microscope. GSC spheres were treated with β-elemene, and the expression levels of CD133, ATP-binding cassette subfamily G member 2 (ABCG2) and glial fibrillary acidic protein (GFAP) were examined by western blotting. After treatment with β-elemene, the volumes and weights of GSC xenografts were measured, and the expression of CD133, ABCG2 and GFAP was evaluated through immunohistochemistry analysis. After treatment with β-elemene and temozolomide (TMZ), GSC viability was examined by the CCK-8 assay, and the volumes and weights of xenografts were measured. We found that CD133(+) cells were assembled in some vascular walls and also sparsely distributed in other parts of glioblastoma tissues. β-elemene decreased the formation of GSC spheres, dispersedGSC spheres and inhibited the proliferation of GSCs in vitro and in vivo. In the GSC spheres and xenografts treated with β-elemene, the expression of CD133 and ABCG2 was significantly downregulated, and the expression of GFAP increased. Furthermore, the sensitivity of GSCs to TMZ was enhanced in vitro and in vivo. These results suggest that β-elemene impaired the stemness of GSC spheres, promoted their differentiation and sensitized GSCs to TMZ. β-elemene will hopefully become a valuable agent to enhance the effects of radiotherapy and chemotherapy.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.