Abstract Title:

Ellagic acid protects rats from chronic renal failure via MiR-182/FOXO3a axis.

Abstract Source:

Mol Immunol. 2021 Oct ;138:150-160. Epub 2021 Aug 21. PMID: 34428620

Abstract Author(s):

Siqi Chen, Meiyang Zhou, Xuxia Ying, Canxin Zhou

Article Affiliation:

Siqi Chen


Studies showed that ellagic acid (EA) can significantly improve kidney function, but the renal-protective effects of EA and the potential mechanism require adequate elucidation. This study investigated the mechanisms of EA in chronic renal failure (CRF) injury. A rat model of CRF was established by 5/6 nephrectomy. The body weight, urine volume and urine protein content of the rat model of CRF with EA treatment (0/20/40 mg/kg/day) were recorded. Hematoxylin&eosin (H&E) staining, Masson staining and TUNEL were used for histopathological observation. Serum levels of creatinine value, blood urea nitrogen, superoxide dismutase, glutathione, malondialdehyde, tumor necrosis factor-α, interleukin-6 and intercellular cell adhesion molecule-1 were determined using enzyme-linked immunosorbent assay (ELISA) kits. The expressions of genes involved in CRF damage were detected by quantitative real-time PCR (qRT-PCR) and western blot. The relationships among EA, miR-182 and FOXO3a were verified by TargetScan 7.2, dual-luciferase assay and rescue experiments. In this study, EA treatment significantly increased the body weight, but reduced urination and urine protein content, renal tissue damage, collagen deposition, inflammation and the contents of serum creatinine (Scr), bloodurea nitrogen (BUN), and malondialdehyde (MDA), and improved the antioxidant capacity of CRF rats. Moreover, EA treatment inhibited miR-182, TGF-β1, fibronectin and Bax levels, and promoted those of FOXO3a and Bcl-2 in CRF rats. Additionally, miR-182 specifically targeted FOXO3a, and effectively reduced the renal-protective effect of EA. Further research found that overexpressed FOXO3a partially reversed the inhibitory effect of miR-182 on CRF rats. Our results suggest that EA might reduce CRF injury in rats via miR-182/FOXO3a.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.