Article Publish Status: FREE
Abstract Title:

Suppressive effect of epigallocatechin-3-O-gallate on endoglin molecular regulation in myocardial fibrosis in vitro and in vivo.

Abstract Source:

J Cell Mol Med. 2016 Jun 16. Epub 2016 Jun 16. PMID: 27306149

Abstract Author(s):

Chiu-Mei Lin, Hang Chang, Bao-Wei Wang, Kou-Gi Shyu

Article Affiliation:

Chiu-Mei Lin


Epigallocatechin-3-O-gallate (EGCG), derived from green tea, has been studied extensively because of its diverse physiological and pharmacological properties. This study evaluates the protective effect of EGCG on angiotensin II (Ang II)-induced endoglin expression in vitro and in vivo. Cardiac fibroblasts (CFs) from the thoracic aorta of adult Wistar rats were cultured and induced with Ang II. Western blotting, Northern blotting, real-time PCR and promoter activity assay were performed. Ang II increased endoglin expression significantly as compared with control cells. The specific extracellular signal-regulated kinase inhibitor SP600125 (JNK inhibitor), EGCG (100μM) and c-Jun N-terminal kinase (JNK) siRNA attenuated endoglin proteins following Ang II induction. In addition, pre-treated Ang II-induced endoglin with EGCG diminished the binding activity of AP-1 by electrophoretic mobility shift assay. Moreover, the luciferase assay results revealed that EGCGsuppressed the endoglin promoter activity in Ang II-induced CFs by AP-1 binding. Finally, EGCG and the JNK inhibitor (SP600125) were found to have attenuated endoglin expression significantly in Ang II-induced CFs, as determined through confocal microscopy. Following in vivo acute myocardial infarction (AMI)-related myocardial fibrosis study, as well as immunohistochemical and confocal analyses, after treatment with endoglin siRNA and EGCG (50 mg/kg), the area of myocardial fibrosis reduced by 53.4% and 64.5% and attenuated the left ventricular end-diastolic and systolic dimensions, and friction shortening in hemodynamic monitor. In conclusion, epigallocatechin-3-O-gallate (EGCG) attenuated the endoglin expression and myocardial fibrosis by anti-inflammatory effect in vitro and in vivo, the novel suppressive effect was mediated through JNK/AP-1 pathway.

Study Type : Animal Study, In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022, Journal Articles copyright of original owners, MeSH copyright NLM.