Abstract Title:

Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: Implications for breast cancer prevention.

Abstract Source:

Cell Cycle. 2012 Jan 15 ;12(2). Epub 2012 Jan 15. PMID: 23257780

Abstract Author(s):

Rosa Sanchez-Alvarez, Ubaldo E Martinez-Outschoorn, Zhao Lin, Rebecca Lamb, James Hulit, Anthony Howell, Federica Sotgia, Emanuel Rubin, Michael P Lisanti

Article Affiliation:

Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA.


Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with"stemness,"more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This"two-compartment"metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert"low-risk"breast cancer patients to"high-risk"status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results also show that antioxidants [such as N-acetyl cysteine (NAC)] can effectively reverse or prevent ethanol-induced oxidative stress in cancer-associated fibroblasts, suggesting a novel strategy for cancer prevention.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.