n/a
Article Publish Status: FREE
Abstract Title:

Eugenol Reduces LDL Cholesterol and Hepatic Steatosis in Hypercholesterolemic Rats by Modulating TRPV1 Receptor.

Abstract Source:

Sci Rep. 2019 Sep 30 ;9(1):14003. Epub 2019 Sep 30. PMID: 31570745

Abstract Author(s):

Amani A Harb, Yasser K Bustanji, Ihab M Almasri, Shtaywy S Abdalla

Article Affiliation:

Amani A Harb

Abstract:

Eugenol, a component of essential oils of medicinal and food plants, has a hypolipidemic effect in experimental animals although its mechanism of action is still unclear. This study aims to explore the mechanism of the hypolipidemic effect of eugenol in rats fed a high cholesterol and fat diet (HCFD). Eugenol significantly reduced total cholesterol (TC), low-density lipoproteins (LDL), atherogenic index (AI) but not high-density lipoproteins (HDL) or triglycerides (TG). Eugenol also decreased steatosis and hepatic inflammation in liver sections, decreased hepatomegaly, and the hepatic marker enzymes alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activity and increased the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) activity in hypercholesterolemic rats. Eugenol did not inhibit hepatic 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase but caused down-regulation of transient receptor potential vanilloid (TRPV1) channels in the liver. Docking simulation using fast, rigid exhaustive docking (FRED) software indicated a tail-up/head-down interaction of eugenol with TRPV1 channel. Data indicate that eugenol does not inhibit HMG-CoA reductase but rather induces its action by interaction with TRPV1 channels.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.