Abstract Title:

Evodiamine Prevents Glioma Growth, Induces Glioblastoma Cell Apoptosis and Cell Cycle Arrest through JNK Activation.

Abstract Source:

Am J Chin Med. 2017 ;45(4):879-899. Epub 2017 May 18. PMID: 28514905

Abstract Author(s):

Wen-Shin Wu, Chih-Chiang Chien, Kao-Hui Liu, Yen-Chou Chen, Wen-Ta Chiu

Article Affiliation:

Wen-Shin Wu


Evodiamine (EVO) is an active medicinal compound derived from the traditional herbal medicine Evodia rutaecarpa. It has been reported that evodiamine has several beneficial biological properties, including anticancer and anti-inflammatory activities. However, the in vitro and in vivo anticancer activities of EVO against the growth of glioblastoma cells remain undefined. EVO induced significant decreases in the viability of U87 and C6 glioma cells, but not of primary astrocytes, according with the occurrence of apoptotic characteristics including DNA ladders, caspase-3 and poly(ADP ribose) polymerase (PARP) protein cleavage, and hypodiploid cells. The disruption of the mitochondrial membrane potential (MMP) was detected, and it was found that the peptidyl caspase-9 inhibitor, Z-LEHD-FMK, significantly prevented glioma cells from EVO-induced apoptosis. Increased c-Jun N-terminal kinase (JNK) protein phosphorylation by EVO was observed, and the addition of JNK inhibitors, SP600125 and JNKI inhibited the EVO-induced apoptosis was inhibited. Additionally, EVO treatment induced G2/M arrest with increased polymerized tubulin protein expression in U87 and C6 cells. Elevated expressions of the cyclin B1, p53, and phosphorylated (p)-p53 proteins were detected in EVO-treated glioma cells, and these were inhibited by JNK inhibitors. An in vivo study showed that EVO significantly reduced the growth of gliomas elicited by the subcutaneous injection of U87 cells with increases in cyclin B1, p53, and p-p53 protein expressions in tumors. An analysis of eight EVO-related chemicals showed that alkyl groups at position 14 in EVO are important for its anti-glioma effects which involve both apoptosis and G2/M arrest. Evidence is provided that supports EVO induction of apoptosis and G2/M arrest via the activation of JNK-mediated gene expression and disruption of MMP in glioblastoma cells. EVO was shown to penetrate the blood-brain barrier; EVO is therefore predicted to be a promising compound for the chemotherapy of glioblastomas and deserves further investigations.

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.