n/a
Abstract Title:

[Evaluation of genotoxic and/or co-genotoxic effects in cells exposed in vitro to extremely-low frequency electromagnetic fields].

Abstract Source:

Ann Ig. 2004 Jan-Apr;16(1-2):321-40. PMID: 15554538

Abstract Author(s):

G Scassellati Sforzolini, M Moretti, M Villarini, C Fatigoni, R Pasquini

Article Affiliation:

G Scassellati Sforzolini

Abstract:

During the last two decades, concerns have arisen regarding a possible association between extremely-low frequency (ELF) electromagnetic fields (EMF) exposure and cancer incidence (e.g. childhood acute leukaemia, cancer of the nervous system, and lymphomas). In 1979, Wertheimer and Leeper firstly reported an excess of cancer mortality among children living in homes located near power lines and presumably exposed to elevated magnetic fields. Subsequently, a large number of epidemiological studies investigated the possible association between residential or occupational exposure to ELF-EMF and cancer. Several in vivo and in vitro models have been investigated with the effort to determine a link, if any, between such fields and mutagenesis and to determine the possible mechanism of cancer risk. However, a causal relationship between exposure to ELF-EMF and cancer has been suggested but has not been unequivocally demonstrated. In 1998, following an analysis of the results retrieved in the literature, the U.S. National Institute of Environmental Health Sciences proposed to apply a"possible human carcinogen"category (Group 2B) to ELF-EMF. More recently, in 2002, the same classification for ELF-MF was proposed by the International Agency for Research on Cancer. In this in vitro approach, to test the genotoxic and/or co-genotoxic potency of ELF-MF, we used the alkaline single-cell microgel-electrophoresis (comet) assay and the cytokinesis block micronucleus test. Co-exposure assays were performed in the presence of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline N-oxide (4NQO), benzene, 1,4-benzenediol (1,4-BD), or 1,2,4-benzenetriol (1,2,4-BT). An ELF-MF (50 Hz, 5 mT) was obtained by a system composed of capsulated induction coils. ELF-MF alone was unable to cause direct primary DNA damage. Whereas, an increased extent of DNA damage was observed in cells co-exposed to ELF-MF and MNNG, 1,4-BD, or 1,2,4-BT. An opposite trend was observed in cells treated with 4NQO and co-exposed to ELF-MF. Moreover, the frequency of micronucleated cells in ELF-MF-exposed cells was higher than in control cultures. Our findings suggest that the tested ELF-MF (50 Hz, 5 mT) possess genotoxic (micronucleus test) and co-genotoxic (comet assay) capabilities. The possibility that ELF-MF might interfere with the genotoxic activity of xenobiotics has important implications, since human populations are likely to be exposed to a variety of genotoxic agents concomitantly with exposure to this type of physical agent.

Study Type : Human In Vitro

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.