Abstract Title:

Broccoli regulates protein alterations and cataractogenesis in selenite models.

Abstract Source:

Curr Eye Res. 2010 Feb;35(2):99-107. PMID: 20136419

Abstract Author(s):

M Vibin, S G Siva Priya, B N Rooban, V Sasikala, V Sahasranamam, Annie Abraham

Article Affiliation:

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, India.

Abstract:

PURPOSE: To study the efficacy of Brassica oleracea var. italica (Broccoli) in the prevention of selenite induced biochemical changes and the incidence of cataractogenesis in vivo. METHODS: Eight day old Sprague-Dawley rat pups were divided into four groups: I-Control; II-Sodium selenite (4 mg/kg body weight) administered; III-Sodium selenite + quercetin; and IV-Sodium selenite + flavonoid fraction of broccoli (FFB). Treatment groups III and IV received quercetin and FFB intraperitoneally from 8th to 15th day at a concentration (2.0 mg/kg body weight). The development of cataract was assessed and graded by slit-lamp examination. Some relevant biochemical parameters-such as activities of superoxide dismutase (SOD), catalase, Ca(2+)ATPase, calpains, concentration of reduced glutathione (GSH), levels of calcium, lipid peroxidation product-thiobarbituric acid reacting substances (TBARS) and SDS-PAGE analysis of lens water soluble proteins (WSF) were analyzed. RESULTS: FFB modulates selenite-induced biochemical changes in albino rats. Lenses of Group I rats were clear but in Group II, all lenses developed dense opacification (grade 5 and 6), whereas mild opacifications were observed in Group III and Group IV (grade 2). Group III and Group IV lenses exhibited significantly higher values of antioxidant enzymes, Ca(2+)ATPase, and GSH, whereas lower values were obtained for TBARS, calcium, and calpains compared to Group II. Lens protein profile of water soluble proteins showed normal levels of Group III and Group IV compared to Group II lenses. CONCLUSION: FFB prevents selenite-induced cataractogenesis in albino rat pups, possibly by maintaining antioxidant status and ionic balance through Ca(2+) ATPase pump, inhibition of lipid peroxidation, calpain activation, and protein insolubilization, which have been reported in this article for the first time.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.