Abstract Title:

Folic acid administration inhibits amyloidβ-peptide accumulation in APP/PS1 transgenic mice.

Abstract Source:

J Nutr Biochem. 2015 Aug ;26(8):883-91. Epub 2015 Apr 28. PMID: 25959374

Abstract Author(s):

Wen Li, Huan Liu, Min Yu, Xumei Zhang, Meilin Zhang, John X Wilson, Guowei Huang

Article Affiliation:

Wen Li

Abstract:

Alzheimer's disease (AD) is associated with malnutrition, altered one-carbon metabolism and increased hippocampal amyloid-β peptide (Aβ) accumulation. Aberrant DNA methylation may be an epigenetic mechanism that underlies AD pathogenesis. We hypothesized that folic acid acts through an epigenetic gene silencing mechanism to lower Aβ levels in the APP/PS1 transgenic mouse model of AD. APP/PS1 mice were fed either folate-deficient or control diets and gavaged daily with 120 μg/kg folic acid, 13.3mg/kg S-adenosylmethionine (SAM) or both. Examination of the mice after 60 days of treatment showed that serum folate concentration increased with intake of folic acid but not SAM. Folate deficiency lowered endogenous SAM concentration, whereas neither intervention altered S-adenosylhomocysteine concentration. DNA methyltransferase (DNMT) activity increased with intake of folic acid raised DNMT activity in folate-deficient mice. DNA methylation rate was stimulated by folic acid in the amyloid precursor protein (APP) promoter and in the presenilin 1 (PS1) promoter. Folate deficiency elevated hippocampal APP, PS1 and Aβ protein levels, and these rises were prevented by folic acid. In conclusion, these findings are consistent with a mechanism in which folic acid increases methylation potential and DNMT activity, modifies DNA methylation and ultimately decreases APP, PS1 and Aβ protein levels.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.