Abstract Title:

Fucoidan promotes mechanosensory hair cell regeneration following amino glycoside-induced cell death.

Abstract Source:

Hear Res. 2011 Dec ;282(1-2):236-42. Epub 2011 Jul 23. PMID: 21810458

Abstract Author(s):

In Seok Moon, Ju-Hoon So, Young-Mi Jung, Won-Sang Lee, Eun Young Kim, Jung-Hwa Choi, Cheol-Hee Kim, Jae Young Choi

Article Affiliation:

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, South Korea.

Abstract:

OBJECTIVE: Lateral line system of the zebrafish is a useful model for study of hair cell toxicity and regeneration. We found that low molecular weight fucoidan (LMWF) stimulated the regeneration of mechanosensory hair cells after neomycin-induced cell death in zebrafish lateral line. The aims of this study were to quantify the regenerative effects of LMWF and determine their relationship to the Notch and FGF signaling pathways.

METHODS: Wild-type zebrafish and three different transgenic zebrafish lines (Pou4f3::GFP, scm1::GFP, and ET20::GFP) were used. At 4.5-6 days post-fertilization, lateral line hair cells of larvae were eliminated using neomycin (500 μM). Larvae were then treated with LMWF. Neuromasts were observed using confocal microscopy. Stereocilia morphology was observed using scanning electron microscopy, and the location and status of regeneration was assessed using 5-bromo-2-deoxyuridine (BrdU) incorporation.

RESULTS: Hair cells damaged by neomycin treatment regenerated faster in wild-type and Pou4f3::GFP larvae treated with LMWF (50 μg/ml) than in untreated controls. LMWF also enhanced the regeneration of supporting cells in scm1::GFP and ET20::GFP larvae. Increased numbers of BrdU-labeled cells were found after LMWF treatment in neuromast regions corresponding to internal and peripheral supporting cells. The effect of LMWFwas mimicked by the Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT), but the effects of LMWF and DAPT were not additive.

CONCLUSION: LMWF enhances the regeneration of hair cells damaged by neomycin. The mechanism may involve the Notch signaling pathway. LMWF shows promise as a therapeutic agent for hearing and balance disorders.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.