Abstract Title:

Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles.

Abstract Source:

Clin Invest Med. 2008 ;31(3):E160-7. PMID: 18544279

Abstract Author(s):

Xiaojing Zhang, James Z Xing, Jie Chen, Lawrence Ko, John Amanie, Sunil Gulavita, Nadeem Pervez, Don Yee, Ronald Moore, Wilson Roa

Article Affiliation:

Xiaojing Zhang


PURPOSE: Nanotechnology is an emerging field with significant translational potential in medicine. In this study, we applied gold nanoparticles (GNP) to enhance radiation sensitivity and growth inhibition in radiation-resistant human prostate cancer cells.

METHODS: Gold nanoparticles (GNPs) were synthesized using HAuCl4 as the gold particle source and NaBH4 as the reductant. Either thio-glucose or sodium citrate was then added to the solution separately to bind the GNPs to form thio-glucose-capped gold nanoparticles (Glu-GNP) and neutral gold nanoparticles (TGS-GNPs). Human prostate carcinoma DU-145 cells were exposed to vehicle, irradiation, 15nM TGS-GNPs, or 15nM Glu-GNPs, or GNPs plus irradiation. The uptake assays of GNP were performed using hemocytometer to count cells and the mass spectrometry was applied to calculate gold mass. The cytotoxicity induced by GNPs, irradiation, or GNPs plus irradiation was measured using a standard colorimetric MTT assay.

RESULTS: Exposure to Glu-GNPs resulted in a three times increase of nanoparticle uptake compared to that of TGS-GNPs in each target cell (p<0.005). Cytoplasmic intracellular uptake of both TGS-GNPs and Glu-GNPs resulted in a growth inhibition by 30.57% and 45.97% respectively, comparing to 15.88% induced by irradiation alone, in prostate cancer cells after exposure to the irradiation. Glu-GNPs showed a greater enhancement, 1.5 to 2 fold increases within 72 hours, on irradiation cytotoxicity compared to TGS-GNPs. Tumour killing, however, did not appear to correlate linearly with nanoparticle uptake concentrations.

CONCLUSION: These results showed that functional glucose-bound gold nanoparticles enhanced radiation sensitivity and toxicity in prostate cancer cells. In vivo studies will be followed to verify our research findings.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.