n/a
Article Publish Status: FREE
Abstract Title:

Gastrodin Exerts Cardioprotective Action via Inhibition of Insulin-Like Growth Factor Type 2/Insulin-Like Growth Factor Type 2 Receptor Expression in Cardiac Hypertrophy.

Abstract Source:

ACS Omega. 2021 Jul 6 ;6(26):16763-16774. Epub 2021 Jun 21. PMID: 34250336

Abstract Author(s):

Jun Lu, Xin Ma, Wen-Cong Gao, Xin Zhang, Yuanling Fu, Qian Liu, Lixiang Tian, Xiao-Dan Qin, Weimin Yang, Hong-Yi Zheng, Chang-Bo Zheng

Article Affiliation:

Jun Lu

Abstract:

Pathological cardiac hypertrophy is commonly associated with an upregulation of fetal genes, fibrosis, cardiac dysfunction, and heart failure. Previous studies have demonstrated that gastrodin (GAS) exerts cardioprotective action in the treatment of cardiac hypertrophy. However, the mechanism by which GAS protects against cardiac hypertrophy is yet to be elucidated. A mouse model of myocardial hypertrophy was established using an angiotensin II (Ang II) induction. GAS (5 or 50 mg/kg/d) was orally administered every day starting 7 days prior to the Ang II infusion combined with sham-operated controls. Heart samples from each group were collected for RNA sequencing. Using bioinformatics analysis, the key differentially expressed genes (DEGs) that are involved in reversing cardiac function were identified. Through bioinformatics analysis, the key DEGs that are involved in GAS's inhibition of Ang II-induced abnormal gene expression within the heart were identified. This was further validated using quantitative real-time PCR and Western blotting in neonatal rat cardiomyocytes (NRCMs). Oral administration of GAS significantly suppressed the Ang II-induced increase in heart size and heart weight to body weight. Furthermore, pretreatment of the NRCMs with GAS led to a dose-dependent inhibition of Ang II-induced increases inmRNA expression. We identified 620 upregulated and 87 downregulated Ang II-induced DEGs II, among which the expression patterns of 58 and 146 genes were inverted by low-dose and high-dose GAS, respectively. These inverted DEGs were found to be mainly enriched in the biological processes of regulation of Ras protein signal transduction, heart contraction, covalent chromatin modification, glucose metabolism, and positive regulation of cell cycle. Among them, the insulin-like growth factor type 2 () gene, which was found to be highly reversed and downregulated by GAS, served as a core gene linking energy metabolism, immune regulation, and systemic development. Subsequent functional verification demonstrated that IGF2, and its receptor IGF2R, is one of the targets of GAS that helps protect against cardiac hypertrophy. Taken together, we have identified, for the first time, IGF2/IGF2R as a potential target influenced by GAS in the prevention of cardiac hypertrophy.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.