Abstract Title:

Gastrodin protects retinal ganglion cells through inhibiting microglial-mediated neuroinflammation in an acute ocular hypertension model.

Abstract Source:

Int J Ophthalmol. 2017 ;10(10):1483-1489. Epub 2017 Oct 18. PMID: 29062764

Abstract Author(s):

Jia-Wei Wang, Yao-Ming Liu, Xiao-Fei Zhao, Han Zhang

Article Affiliation:

Jia-Wei Wang


AIM: To investigate the neuroprotective effect of gastrodin on retinal ganglion cells (RGCs) in an acute ocular hypertension (AOH) rat model and to identify its possible mechanism.

METHODS: AOH rat model was performed in a randomly selected eye by anterior chamber perfusion and either received an intraperitoneal injection with various concentrations of gastrodin or normal saline. After 2wk, the rats were sacrificed. FluoroGold was used to label survival RGCs. Immunostaining with anti-Iba1 in the retinal flat mounts to calculate the microglia density in the ganglion cell layer (GCL). Changes in microglial cytokines, tumour necrosis factor-alpha (TNF-α) and inducible NO synthase (iNOS) were examined with Western blot and reverse transcription-quantitative polymerase chain reaction. Expression levels of total and phosphorylated p38 mitogen activated protein kinase (MAPK) were determined by Western blot.

RESULTS: Results showed that AOH induced significant loss of RGCs and severe microglia activation in the GCL. Besides, AOH increased the phosphorylation of p38 MAPK and promoted the release of microglial cytokines in the retinas. Intraperitoneal injection with dose-dependent gastrodin significantly reduced the loss of RGCs and inhibited retinal microglia activation, accompanied with the decreased expression levels of microglial cytokines and p38 MAPK phosphorylation.

CONCLUSION: Gastrodin exerts a neuroprotective effect on RGCs in an acute glaucoma animal modelinhibiting microglia activation and microglial-mediated neuroinflammation. The finding demonstrates the potential application of gastrodin in the neuroprotective therapy of acute glaucoma and other retinal neurodegenerative diseases characterized by microglia activation and RGCs death.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & receive The Dark Side of Wheat Ebook

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

The Dark Side of Wheat

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.