n/a
Abstract Title:

Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis.

Abstract Source:

Biomed Pharmacother. 2017 Sep ;93:1083-1097. Epub 2017 Jul 20. PMID: 28738532

Abstract Author(s):

Eglal Mahgoub, Shanmugam Muthu Kumaraswamy, Kamal Hassan Kader, Balaji Venkataraman, Shreesh Ojha, Ernest Adeghate, Mohanraj Rajesh

Article Affiliation:

Eglal Mahgoub

Abstract:

Cisplatin (CP) is a potent and widely used chemotherapeutic agent. However, the clinical benefits of CP are compromised because it elicits nephrotoxicity and ototoxicity. In this study, we investigated the nephroprotective effects of the phytochemical genipin (GP) isolated from the gardenia (Gardenia jasminoides) fruit, using a murine model of CP-induced nephropathy. GP pretreatment attenuated the CP-induced renal tissue injury by diminishing the serum blood urea nitrogen, creatinine, and cystatin C levels, as well as those of kidney injury molecule-1. In addition, GP attenuated the CP-induced oxidative/nitrative stress by suppressing the activation of NADPH oxidase, augmenting the endogenous antioxidant defense system, and diminishing the accumulation of 4-hydroxynonenal and 3-nitrotyrosine in renal tissues. Furthermore, reduced levels of proinflammatory cytokines such as tumor necrosis factor-alpha and interleukin-1 beta indicated that CP-induced renal inflammation was mitigated upon the treatment with GP. GP also attenuated the CP-induced activation of mitogen-activated protein kinases, excessive activities of caspase-3/7 and poly(ADP-ribose) polymerase, DNA fragmentation, and apoptosis. When administered 12h after the onset of kidney injury, GP showed a therapeutic effect by ameliorating CP-induced nephrotoxicity. Moreover, GP synergistically enhanced the CP-induced cell death of T24 human bladder cancer cells. Collectively, our data indicate that GP attenuated the CP-induced renal tissue injury by abrogating oxidative/nitrative stress and inflammation and by blocking cell death pathways, thereby improving the renal function. Thus, our results suggest that the use of GP may be a promising new protective strategy against cisplatin-induced nephrotoxicity.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.