Abstract Title:

Genistein affects HER2 protein concentration, activation, and promoter regulation in BT-474 human breast cancer cells.

Abstract Source:

Endocrine. 2007 Aug;32(1):69-78. Epub 2007 Oct 2. PMID: 17992604

Abstract Author(s):

Mary S Sakla, Nader S Shenouda, Pete J Ansell, Ruth S Macdonald, Dennis B Lubahn

Article Affiliation:

Genetics Area Program, University of Missouri, Columbia, MO, USA.


The HER2 proto-oncogene, a member of the epidermal growth factor receptor family, is overexpressed in 20-30% of breast cancers. Genistein, the main soy isoflavone, interacts with estrogen receptors (ER) and it is also a potent tyrosine kinase inhibitor. Previously, our laboratory found that genistein delayed mammary tumor onset in transgenic mice that overexpress HER2 gene. Our goal was to define the mechanism through which genistein affects mammary tumorigenesis in HER2 overexpressing mice. We hypothesized that genistein inhibits HER2 activation and expression through ER-dependent and ER-independent mechanisms. Genistein inhibited total HER2 protein expression and tyrosine phosphorylation in BT-474, an ERalpha (-) and ERbeta (+) human breast cancer cell line, however, E2 had no effect. Taken together, these data suggest that genistein has an ER-independent inhibitory effect, presumably, through tyrosine kinase inhibition activity. Genistein at 1.0 microM mimicked E2 and down-regulated HER2 protein phosphorylation when BT-474 was co-transfected with ERalpha, but not ERbeta. Although E2 and overexpression of HER2 can promote mammary tumorigenesis, an inverse relationship between ER expression and HER2 overexpression has been found in human breast cancer. We cloned a 500-bp promoter region upstream of the HER2 transcription initiation site. Co-transfection with ERalpha, but not with ERbeta, down-regulated HER2 promoter reporter in BT-474. At concentrations>or =1 microM, genistein inhibited HER2 promoter reporter in the absence of ERalpha. In conclusion, genistein at>or =1 microM inhibited HER2 protein expression, phosphorylation, and promoter activity through an ER-independent mechanism. In the presence of ERalpha, genistein mimicked E2 and inhibited HER2 protein phosphorylation. These data support genistein's chemo-prevention and potential chemo-therapeutic roles in breast cancer.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.