Abstract Title:

Zingiber officinale exhibits behavioral radioprotection against radiation-induced CTA in a gender-specific manner.

Abstract Source:

Pharmacol Biochem Behav. 2006 Jun;84(2):179-88. Epub 2006 Jun 21. PMID: 16797061

Abstract Author(s):

Anupum Haksar, Ashok Sharma, Raman Chawla, Raj Kumar, Rajesh Arora, Surender Singh, J Prasad, M Gupta, R P Tripathi, M P Arora, F Islam, R K Sharma

Article Affiliation:

Division of Radiological Imaging, Bio-informatics and Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Road, Delhi-110054, India.


At the organismic level, exposure to radiation can produce taste aversion (CTA) learning and emesis, which have been proposed as behavioral endpoints that are mediated by harmful effects of radiations on peripheral systems, primarily the gastrointestinal system. Thus, the aim of the present investigation was to study the gastroprotective action of hydroalcoholic extract of zingiber rhizome (Zingiber officinale Rosc.) against radiation-induced conditioned taste aversion (CTA) in both male and female species of animals, for testing its potential as a behavioral radioprotector. Administration of zingiber extract 1 h before 2-Gy gamma-radiation was significantly effective in blocking the saccharin avoidance response, with 200 and 250 mg/kg b.wt. i.p., being the most effective doses for male and female rats, respectively. A comparison of the efficacy of zingiber extract with two antiemetic drugs, ondansteron and dexamethasone, revealed that the extract rendered comparable protection against radiation-induced CTA. Our experiments also confirmed the existence of sex dichotomy (i.e., the sex of animal greatly influenced response towards radiation exposure) in relation to behavioral responses (CTA) or differential metabolism. The observed gender variations were hypothesized to be a result of hormonal fluctuations and differences in pharmacological parameters in male and female rats. To correlate the mechanism of action, the free-radical-scavenging potential of zingiber extract to scavenge hydroxyl ion and nitric oxide was also tested, in cell-free system and a concentration of 1000 microg/ml, was found to be the most potent, which has been proposed as one the many activities assisting in its overall ability to modulate radiation-induced taste aversion. The results demonstrate that Z. officinale possesses antioxidant, radioprotective and neuromodulatory properties that can be effectively utilized for behavioral radioprotection and for efficiently mitigating radiation-induced CTA in both males and females species.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.