Abstract Title:

Ginkgo biloba and Its Constituent 6-hydroxykynurenic-acid as well as Its Proanthocyanidins Exert Neurorestorative Effects against Cerebral Ischemia.

Abstract Source:

Planta Med. 2020 May 15. Epub 2020 May 15. PMID: 32413917

Abstract Author(s):

Jianbiao Yao, Hongxiang Qiao, Zhuming Jin, Ruwei Wang, Haibo Huang, Ling Fang, Yan Chen, Khalid Tai, Yan Chen, Thorsten Roland Doeppner, Zhong Chen, Kenny Kuchta

Article Affiliation:

Jianbiao Yao


Neuroprotective effects against cerebral ischemia/reperfusion (I/R) injury byleaves are commonly attributed to the antioxidant activity of its proanthocyanidins. Furthermore, preliminary experiments identified 6-hydroxykynurenic acid (6-HKA) as a major contributor to this effect of extract ofleaves (EGb) prepared according to the Chinese Pharmacopoeia (ChP). In order to elucidate the specific contribution of both proanthocyanidins and 6-HKA to the overall neurorestorative effects of this extract according to ChP, EGb ChP was separated into pure 6-HKA and a newly developed Ginkgo proanthocyanidin extract (GPE), enriched in proanthocyanidins but not containing 6-HKA. Male Sprague-Dawley rats were divided into the groups: sham: 8; model (placebo): 25; GPE 80 mg/kg: 13; GPE 40 mg/kg: 13; GPE 20 mg/kg: 16; grape seed extract (negative control) 40 mg/kg: 18; nimodipine (positive control) 2 mg/kg: 8. All non-sham animals were subjected to cerebral I/R injury by occluding the middle cerebral artery with a nylon suture that was removed after 2 hof ischemia to establish reperfusion. For comparison, a parallel series of experiments were performed with 6-HKA. In theseexperiments, neurological dysfunctions were reduced by both GPE and 6-HKA, and both average infarct size and concentrations of malondialdehyde (MDA) and super oxide dismutase (SOD) were significantly ameliorated as compared to the model group. This data, therefore, demonstrates that the neuroprotective effects of EGb cannot be explained by a purely chemical antioxidative effect alone as has been previously proposed, especially with regards to the proanthocyanidins. A pharmacological neurorestorative effect of EGb on neurons and brain tissue itself seems to be a much more straightforward explanation for the presented observations. This effect is most likely explained by the synergistic action of both its numerous phenolic constituents (GPE) and 6-hydroxykynurenic acid (6-HKA), which could be identified as one major contributor to the observed activity.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.