Abstract Title:

[Effects of nuclear factor kappaB and transforming growth factor beta1 in the anti-liver fibrosis process using Ginkgo biloba extract].

Abstract Source:

Zhonghua Gan Zang Bing Za Zhi. 2005 Dec;13(12):903-7. PMID: 16381635

Abstract Author(s):

Shi-quan Liu, Jie-ping Yu, Lei He, Hong-gang Yu, He-sheng Luo


OBJECTIVE: To evaluate the effects of Ginkgo biloba extract (EGB) on CCl(4)-induced liver fibrosis and to investigate the underlying mechanisms. METHODS: Rats were divided into the following groups: normal control group, CCl(4) model group, low dose EGB group, moderate dose EGB group and high dose EGB group. The rat liver fibrosis model was induced by intraperitoneal injection of CCl(4) twice a week for 8 weeks. The model rats of the three EGB treated groups were given 0.25 g/kg, 0.5 g/kg, 1.0 g/kg of EGB by stomach tubes every day. At the end of the eighth week, the blood and liver specimens were obtained. The expressions of nuclear factor kappaB (NF-kappaB) P65, and alpha-smooth muscle actin (alpha-SMA) were detected by immunohistochemistry. Radioimmunoassay was exploited to evaluate serum hyaluronic acid (HA) and laminin (LN) levels. Electrophoretic mobility shift assay (EMSA) was used to confirm the nuclear translocation activity of NF-kappaB in liver tissues. The mRNA expression of transforming growth factor-beta1 (TGFbeta1) and collagen I was determined by RT-PCR. Malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in liver tissues and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the sera were also examined. RESULTS: CCl(4) administration induced liver fibrosis, which was inhibited by EGB in a dose-dependent manner. The histopathologic scores of liver fibrosis, the levels of serum ALT, AST, HA and LN were significantly lower in the rats treated with EGB compared with those not treated (P<0.01 or P<0.05). SOD and GSH-Px activities were notably elevated and MDA content was significantly lower in the rats treated with EGB (P<0.01 or P<0.05), indicating reduced oxidative stress. Immunohistochemical staining demonstrated inhibition of hepatic stellate cell (HSC) activation (in terms of alpha-SMA expression) and NF-kappaB P65 expression in the livers of the EGB-treated rats. As determined by EMSA and RT-PCR, activation of NF-kappaB, the mRNA expression of TGFbeta1 and collagen I were significantly higher in model group rats, but obviously lower in EGB treated rats. CONCLUSION: EGB is able to ameliorate liver injury and prevent rats from CCl(4)-induced liver fibrosis by suppressing oxidative stress. This process may be related to inhibiting the expression of TGFbeta1 and the induction of NF-kappaB on HSC activation.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.