n/a
Article Publish Status: FREE
Abstract Title:

Ginkgolide K protects the heart against endoplasmic reticulum stress injury by activating the inositol-requiring enzyme 1α/X box-binding protein-1 pathway.

Abstract Source:

Br J Pharmacol. 2016 Aug ;173(15):2402-18. Epub 2016 Jul 8. PMID: 27186946

Abstract Author(s):

Shoubao Wang, Zhenzhong Wang, Qiru Fan, Jing Guo, Gina Galli, Guanhua Du, Xin Wang, Wei Xiao

Article Affiliation:

Shoubao Wang

Abstract:

BACKGROUND AND PURPOSE: Endoplasmic reticulum (ER) stress is increasingly recognized as an important causal factor of many diseases. Targeting ER stress has now emerged as a new therapeutic strategy for treating cardiovascular diseases. Here, we investigated the effects and underlying mechanism of ginkgolide K (1,10-dihydroxy-3,14-didehydroginkgolide, GK) on cardiac ER stress.

EXPERIMENTAL APPROACH: Cell death, apoptosis and ER stress-related signalling pathways were measured in cultured neonatal rat cardiomyocytes, treated with the ER stress inducers tunicamycin, hydrogen peroxide and thapsigargin. Acute myocardial infarction was established using left coronary artery occlusion in mice, and infarct size was measured by triphenyltetrazolium chloride staining. Echocardiography was used to assess heart function and transmission electron microscopy for evaluating ER expansion.

KEY RESULTS: Ginkgolide K (GK) significantly decreased ER stress-induced cell death in both in vitro and in vivo models. In ischaemic injured mice, GK treatment reduced infarct size, rescued heart dysfunction and ameliorated ER dilation. Mechanistic studies revealed that the beneficial effects of GK occurred through enhancement of inositol-requiring enzyme 1α(IRE1α)/X box-binding protein-1 (XBP1) activity, which in turn led to increased ER-associated degradation-mediated clearance of misfolded proteins and autophagy. In addition, GK was also able to partly repress the pro-apoptotic action of regulated IRE1-dependent decay and JNK pathway.

CONCLUSIONS AND IMPLICATIONS: In conclusion, GK acts through selective activation of the IRE1α/XBP1 pathway to limit ER stress injury. GK is revealed as a promising therapeutic agent to ameliorate ER stress for treating cardiovascular diseases.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.