Abstract Title:

Ginsenoside Rh2 impedes proliferation and migration and induces apoptosis by regulating NF-κB, MAPK, and PI3K/Akt/mTOR signaling pathways in osteosarcoma cells.

Abstract Source:

J Biochem Mol Toxicol. 2020 Aug 6:e22597. Epub 2020 Aug 6. PMID: 32762018

Abstract Author(s):

Chenchen Li, Huan Gao, Xuemei Feng, Chuyao Bi, Jing Zhang, Jianyuan Yin

Article Affiliation:

Chenchen Li


Ginsenoside Rh2 is a primary bioactive compound obtained from ginseng that indicated anticancer activities against several malignant tumors. However, previous studies have reported little about the inhibitory effect of Rh2 on osteosarcoma (OS). This study aims to explore whether Rh2 could exert anticancer effects in OS cells and further investigate the proliferation, migration, and apoptosis mechanisms induced by Rh2 in human OS U20S cell line. The viability of U20S cells was obtained by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cell migration property was analyzed by wound-healing assay. Apoptosis was visualized using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), 4',6-diamidino-2-phenylindole (DAPI), and annexin V/propidium iodide (PI) staining. Relative protein expressed was confirmed through Western blot analysis. Mitochondrial membrane potential was evaluated by JC-1 staining. In this study, we used broad-spectrum anticancer drug cisplatin (CP) as a positive control. The results indicated that Rh2 remarkably inhibited cell viability of U20S cells in a dose- and time-dependent manner, and suppressed migration. TUNEL, DAPI, annexin V/PI, and JC-1 assay suggested that Rh2 could induce cellular apoptosis. Rh2 could reduce the levels of Bcl-2, caspase 3, and caspase 9, and promote the expression level of Bax in U20S cells. Moreover, Rh2 could induce apoptosis by promoting mitogen-activated protein kinase (MAPK) signaling pathway and inhibit PI3K/Akt/mTOR and nuclear factor-κB (NF-κB) signaling pathway in U20S cells. These findings indicated that Rh2 has an anticancer effect on U20S cells by regulating MAPK, PI3K/Akt/mTOR, and NF-κB signaling pathway.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.