Article Publish Status: FREE
Abstract Title:

Gypenosides Altered Hepatic Bile Acids Homeostasis in Mice Treated with High Fat Diet.

Abstract Source:

Evid Based Complement Alternat Med. 2018 ;2018:8098059. Epub 2018 Jul 12. PMID: 30105069

Abstract Author(s):

Yanliu Lu, Yimei Du, Lin Qin, Di Wu, Wei Wang, Lei Ling, Feifei Ma, Hua Ling, Li Yang, Changhong Wang, Zhengtao Wang, Xumei Zhou, Yuqi He

Article Affiliation:

Yanliu Lu


Gypenosides extracted from(Thunb.) Makino have significant role in reducing serum lipid level and treating fatty liver diseases, however, without clear mechanism. As gypenosides share the similar core structures with bile acids (the endogenous ligands of nuclear receptor FXR), we hypothesize that gypenosides may improve hypercholesterolemia via FXR-mediated bile acids signaling. The present study was designed to validate the role of gypenosides in reducing levels of serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), as well as in regulating bile acids homeostasis and related gene expression levels. The C57BL/6 male mice were divided into four groups. Mice in groups ND and HFD were fed with normal diet and high fat diet for 38 weeks, respectively. In groups HFD+GP and HFD+ST, mice were fed with high fat diet for 38 weeks and treated with gypenosides and simvastatin (positive control) from weeks 16 to 38, respectively. Serum TC and LDL-C levels were assayed by commercially available kits. Expression levels of genes were tested by the quantitative real-time PCR. The LC-MS/MS was applied to quantify major bile acids in mice livers. Our results showed that gypenosides significantly decreased serum TC and LDL-C levels. The gene expression level ofwas downregulated while the levels of,,,,, andwere upregulated by gypenosides. Indicated by LC-MS/MS technology, gypenosides increased the hepatic levels of several free bile acids and most taurine-conjugated bile acids while decreasing glycine-conjugated bile acids levels. In addition, gypenosides decreased the CA/CDCA ratio. Gypenosides may improve the abnormal lipid profile of HFD-fed mice via two pathways: (1) enhancing the bile acids biosynthesis from cholesterol; (2) decreasing the CA/CDCA ratio which is positively related to cholesterol absorption.

Study Type : Animal Study
Additional Links
Pharmacological Actions : Hypolipidemic : CK(5358) : AC(1221)

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.