Abstract Title:

Molecular mechanisms of hydrogen sulfide toxicity.

Abstract Source:

Drug Metab Rev. 2006;38(4):733-44. PMID: 17145698

Abstract Author(s):

Don H Truong, Mohammad A Eghbal, Wayne Hindmarsh, Sheldon H Roth, Peter J O'Brien

Article Affiliation:

Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada.


RATIONALE: The toxicity of H2S has been attributed to its ability to inhibit cytochrome c oxidase in a similar manner to HCN. However, the successful use of methemoglobin for the treatment of HCN poisoning was not successful for H2S poisonings even though the ferric heme group of methemoglobin scavenges H2S. Thus, we speculated that other mechanisms contribute to H2S induced cytotoxicity. Experimental procedure. Hepatocyte isolation and viability and enzyme activities were measured as described by Moldeus et al. (1978), and Steen et al. (2001). RESULTS: Incubation of isolated hepatocytes with NaHS solutions (a H2S source) resulted in glutathione (GSH) depletion. Moreover, GSH depletion was also observed in TRIS-HCl buffer (pH 6.0) treated with NaHS. Several ferric chelators (desferoxamime and DETAPAC) and antioxidant enzymes (superoxide dismutase [SOD] and catalase) prevented cell-free and hepatocyte GSH depletion. GSH-depleted hepatocytes were very susceptible to NaHS cytotoxicity, indicating that GSH detoxified NaHS or H2S in cells. Cytotoxicity was also partly prevented by desferoxamine and DETAPC, but it was increased by ferric EDTA or EDTA. Cell-free oxygen consumption experiments in TRIS-HCl buffer showed that NaHS autoxidation formed hydrogen peroxide and was prevented by DETAPC but increased by EDTA. We hypothesize that H2S can reduce intracellular bound ferric iron to form unbound ferrous iron, which activates iron. Additionally, H2S can increase the hepatocyte formation of reactive oxygen species (ROS) (known to occur with electron transport chain). H2S cytotoxicity therefore also involves a reactive sulfur species, which depletes GSH and activates oxygen to form ROS.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.