Abstract Title:

Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways.

Abstract Source:

Eur J Nutr. 2018 Nov 21. Epub 2018 Nov 21. PMID: 30460610

Abstract Author(s):

Marina Cruz-Lozano, Adrián González-González, Juan A Marchal, Esperanza Muñoz-Muela, Maria P Molina, Francisca E Cara, Anthony M Brown, Gerardo García-Rivas, Carmen Hernández-Brenes, Jose A Lorente, Pedro Sanchez-Rovira, Jenny C Chang, Sergio Granados-Principal

Article Affiliation:

Marina Cruz-Lozano


PURPOSE: This study was aimed to determine the impact of hydroxytyrosol (HT), a minor compound found in olive oil, on breast cancer stem cells (BCSCs) and the migration capacity of triple-negative breast cancer (TNBC) cell lines through the alteration of epithelial-to-mesenchymal transition (EMT) and embryonic signaling pathways.

METHODS: BCSCs self-renewal was determined by the mammosphere-forming efficiency in SUM159PT, BT549, MDA-MB-231 and Hs578T TNBC cell lines. Flow cytometric analysis of CD44/CD24and aldehyde dehydrogenase positive (ALDH) subpopulations, migration by the"wound healing assay", invasion and Western blot of EMT markers and TGFβ signaling were investigated in SUM159PT, BT549 and MDA-MB-231 cell lines. Wnt/β-catenin signaling was assessed by Western blot in BT549 cells expressing WNT1 and MDA-MB-231 cells. Changes in TGFβ activity was determined by SMAD Binding Element (SBE) reporter assay.

RESULTS: HT reduced BCSCs self-renewal, ALDH(aldehyde dehydrogenase) and CD44/CD24subpopulations, tumor cell migration and invasion. Consistently, HT suppressed Wnt/β-catenin signaling by decreasing p-LRP6, LRP6, β-catenin and cyclin D1 protein expression and the EMT markers SLUG, ZEB1, SNAIL and VIMENTIN. Finally, HT inhibited p-SMAD2/3 and SMAD2/3 in SUM159PT, BT549 and MDA-MB-231 cells, what was correlated with a less TGFβ activity.

CONCLUSION: In conclusion, we report for the first time the inhibitory role of HT on BCSCs and tumor cell migration by targeting EMT, Wnt/β-catenin and TGFβ signaling pathways. Our findings highlight the importance of the chemopreventive compound HT as a novel candidate to be investigated as an alternative targeted therapy for TNBC.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.