Abstract Title:

Hydroxytyrosol prevents PM-induced adiposity and insulin resistance by restraining oxidative stress related NF-κB pathway and modulation of gut microbiota in a murine model.

Abstract Source:

Free Radic Biol Med. 2019 Sep ;141:393-407. Epub 2019 Jul 4. PMID: 31279968

Abstract Author(s):

Ningning Wang, Yanan Ma, Zhuoqun Liu, Lei Liu, Keming Yang, Yaguang Wei, Yang Liu, Xin Chen, Xiance Sun, Deliang Wen

Article Affiliation:

Ningning Wang


Exposure to fine particular matter (≤2.5 μM, PM) contributes to increased risk of obesity and type 2 diabetes. Hydroxytyrosol (HT), a simple polyphenol found in virgin olive oil, is considered to be beneficial for cardiovascular and metabolic disorders. The current study determined whether HT could improve PM-induced adiposity and insulin resistance (IR), and explored the underlying mechanisms. Fifteen adult female C57BL/6j mice on a chow diet were randomly divided into three groups receiving (1) sterile PBS, (2) PMsuspended in sterile PBS (1 mg/mL) and (3) PM+HT (50 mg/kg/day). PM/PBS exposure was administered by oropharynx instillation every other day and HT supplementation was achieved by gavage every day. Four-week PMexposure did not affect body weight, but significantly increased visceral fat mass. The abdominal adiposity coincided with adipocyte hypertrophy and proliferation in visceral white adipose tissue (WAT), as well as decreased metabolic activity in brown adipose tissue and subcutaneous WAT. PMenhanced the oxidative stress by diminishing antioxidant enzyme activities in liver and serum, whereas contents of 4-hydroxynonenal (4-HNE), malondialdehyde (MDA) levels in liver and serum were elevated. These changes were accompanied by macrophage infiltration and activation of NF-κB pathway in the liver. Moreover, PMexposure led to glucose intolerance and insulin insensitivity, impaired hepatic glycogenesis, and decreased insulin-stimulated Akt phosphorylation in peripheral tissues. Importantly, HT treatment prevented PM-induced visceral adipogenesis, oxidative stress, hepatic inflammation and NF-κB activation, systemic and peripheral IR. In vitro, after HepG2 cells were incubated with PM(0, 5, 25, 50, 100 and 200 μg/mL), reduced glutathione depletion and 4-HNE, 8-hydroxy-2'-deoxyguanosine, MDA increment in a dose-dependent manner were observed; likewise, insulin-stimulated glucose uptake decreased in a dose-dependent manner. Further, with antioxidant NAC and NF-κB inhibitor PDTC, we confirmed that HT attenuated PM-induced IR through restraining NF-κB activation evoked by oxidative stress. In addition, HT could expand gut microbiota richness, reduce pathogenic bacteria and accommodate the microbial architecture in PM-exposed mice, which were correlated with parameters of adiposity, oxidative stress and glycometabolism. HT could effectively correct imbalanced oxidative stress triggered by PM, in turn ameliorated NF-κB pathway and insulin signaling. Gut microbiota may mediate the actions of HT.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2023 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.