n/a
Abstract Title:

Icariin improves cognitive deficits by reducing the deposition ofβ-amyloid peptide and inhibition of neurons apoptosis in SAMP8 mice.

Abstract Source:

Neuroreport. 2020 06 7 ;31(9):663-671. PMID: 32427716

Abstract Author(s):

Jie Wu, Jing-Qiu Qu, Yan-Jun Zhou, Yong-Jian Zhou, Yuan-Yuan Li, Nan-Qu Huang, Cheng-Min Deng, Yong Luo

Article Affiliation:

Jie Wu

Abstract:

Effective therapeutic drugs for prevent or reverse the pathobiology of Alzheimer's disease (AD) have not been developed. Icariin (ICA), a prenylated flavonol glycoside derived from the traditional Chinese herb Epimedium sagittatum, exerts a variety of pharmacological activities and shows promise in the treatment and prevention of AD. This study investigated the neuroprotective effects of ICA in SAMP8 mice model of aspects of early AD and explored potential underlying mechanisms. Our results showed that intragastric administration of ICA could reverse the learning and memory impairment of SAMP8 mice in the Morris water maze. Western blot of hippocampal specimens revealed that ICA down-regulated the expression of BACE1 to reduce the expression of cytotoxic Aβ1-42. Furthermore, ICA siginificantly increase the Bcl-2/Bax ratio by increasing the expression of anti-apoptotic protein Bcl-2, and decreasing the expression of pro-apoptotic protein Bax, and thus inhibit neurons apoptosis. These findings indicate that ICA could improve cognitive deficits by reducing the deposition of β1-42 and inhibition of neurons apoptosis and provide further evidence for the clinical efficacy of ICA in the treatment of AD.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.