Article Publish Status: FREE
Abstract Title:

Indole-3-carbinol and 3',3'-diindolylmethane modulate androgen's effect on C-C chemokine ligand 2 and monocyte attraction to prostate cancer cells.

Abstract Source:

Cancer Prev Res (Phila). 2013 Jun ;6(6):519-29. Epub 2013 Apr 12. PMID: 23585426

Abstract Author(s):

Eun-Kyung Kim, Young S Kim, John A Milner, Thomas T Y Wang

Article Affiliation:

Eun-Kyung Kim


Inflammation has a role in prostate tumorigenesis. Recruitment of inflammatory monocytes to the tumor site is mediated by C-C chemokine ligand 2 (CCL2) through binding to its receptor CCR2. We hypothesized that androgen could modulate CCL2 expression in hormone-responsive prostate cancer cells and thereby promote recruitment of monocytes. Given the inhibitory effect of broccoli-derived compounds indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) on androgen-dependent pathways, we also reasoned that I3C and DIM could modulate the effect of androgen on CCL2-mediated pathways. Dihydrotestosterone was found to induce a time-dependent (0-72 hours) and concentration-dependent (0-1 nmol/L) increase in CCL2 mRNA levels in androgen-responsive human prostate cancer cells (LNCaP). This increase in CCL2 mRNA corresponded with increased secretion of CCL2 protein. The effect of dihydrotestosterone was mediated through an androgen receptor (AR)-dependent pathway as small inhibitor RNA against AR negated the induction of CCL2. Although dihydrotestosterone also induced TWIST1 mRNA, an epithelial-mesenchymal transition-related factor, and purported inducer of CCL2, blocking its expression with small inhibitor RNA did not inhibit dihydrotestosterone induction of CCL2 mRNA. Moreover, conditioned media from androgen-treated cells promoted human monocyte THP-1 cell migration and this effect was blocked by antibody against CCL-2. Both I3C and DIM inhibited promotional effects of dihydrotestosterone on CCL2 and migration. These results show that androgen may regulate CCL2 and promote inflammatory microenvironment in prostate tumors and that this process can be blocked by broccoli-derived compounds.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.