Article Publish Status: FREE
Abstract Title:

Induction of G2/M Cell Cycle Arrest and Apoptosis by Genistein in Human Bladder Cancer T24 Cells through Inhibition of the ROS-Dependent PI3k/Akt Signal Transduction Pathway.

Abstract Source:

Antioxidants (Basel). 2019 Aug 21 ;8(9). Epub 2019 Aug 21. PMID: 31438633

Abstract Author(s):

Cheol Park, Hee-Jae Cha, Hyesook Lee, Hyun Hwang-Bo, Seon Yeong Ji, Min Yeong Kim, Su Hyun Hong, Jin-Woo Jeong, Min Ho Han, Sung Hyun Choi, Cheng-Yun Jin, Gi-Young Kim, Yung Hyun Choi

Article Affiliation:

Cheol Park


We examined the anti-cancer effect of genistein, a soy-derived isoflavone, in human bladder transitional cell carcinoma T24 cells. According to our data, genistein induced G2/M phase arrest of the cell cycle and apoptosis. Genistein down-regulated the levels of cyclin A and cyclin B1, but up-regulated the levels of p21WAF1/CIP1, cyclin-dependent kinase (Cdk) inhibitor, that was complexed with Cdc2 and Cdk2. Furthermore, genistein induced the activation of caspases (caspase-3, -8 and -9), and cleavage of poly (ADP-ribose) polymerase cleavage. However, genistein-induced apoptosis was significantly inhibited by a pan-caspase inhibitor, indicating that the induction of apoptosis by genestein was caspase-dependent. In addition, genistein increased the cytosolic release of cytochromeby increasing the Bax/Bcl-2 ratio and destroying mitochondria integrity. Moreover, genistein inactivated the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, while LY294002, a PI3K/Akt inhibitor, increased the apoptosis-inducing effect of genistein. Genistein further increased the accumulation of reactive oxygen species (ROS), which was significantly suppressed by N-acetyl cysteine (NAC), a ROS scavenger, and in particular, NAC prevented genistein-mediated inactivation of PI3K/Akt signaling, G2/M arrest and apoptosis. Therefore, the present results indicated that genistein promoted apoptosis induction in human bladder cancer T24 cells, which was associated with G2/M phase cell cycle arrest via regulation of ROS-dependent PI3K/Akt signaling pathway.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.