n/a
Article Publish Status: FREE
Abstract Title:

Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans.

Abstract Source:

Virology. 2004 Jan 5 ;318(1):405-13. PMID: 14972565

Abstract Author(s):

Magda Marchetti, Edward Trybala, Fabiana Superti, Maria Johansson, Tomas Bergström

Article Affiliation:

Magda Marchetti

Abstract:

Previous reports have indicated that lactoferrin inhibits herpes simplex virus (HSV) infection during the very early phases of the viral replicative cycle. In the present work we investigated the mechanism of the antiviral activity of lactoferrin in mutant glycosaminoglycan (GAG)-deficient cells. Bovine lactoferrin (BLf) was a strong inhibitor of HSV-1 infection in cells expressing either heparan sulfate (HS) or chondroitin sulfate (CS) or both, but was ineffective or less efficient in GAG-deficient cells or in cells treated with GAG-degrading enzymes. In contrast to wild-type HSV-1, virus mutants devoid of glycoprotein C (gC) were significantly less inhibited by lactoferrin in GAG-expressing cells, indicating that lactoferrin interfered with the binding of viral gC to cell surface HS and/or CS. Finally, we demonstrated that lactoferrin bound directly to both HS and CS isolated from surfaces of the studied cells, as well as to commercial preparations of GAG chains. The results support the hypothesis that the inhibition of HSV-1 infectivity by lactoferrin is dependent on its interaction with cell surface GAG chains of HS and CS.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.