"Inhibitory effect of Chinese green tea on cigarette smoke-induced up-regulation of airway neutrophil elastase and matrix metalloproteinase-12 via antioxidant activity." - GreenMedInfo Summary
Inhibitory effect of Chinese green tea on cigarette smoke-induced up-regulation of airway neutrophil elastase and matrix metalloproteinase-12 via antioxidant activity.
Free Radic Res. 2012 Sep ;46(9):1123-9. Epub 2012 Jun 8. PMID: 22574903
Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Our recent study has indicated that Chinese green tea (Lung Chen), in which epigallocatechin-3-gallate (EGCG) accounts for 60% of catechins, protected cigarette smoke-induced lung injury. We now hypothesized that Lung Chen tea may also have potential effect on lung oxidative stress and proteases/anti-proteases in a smoking rat model. Sprague-Dawley rats were exposed to either sham air (SA) or 4% cigarette smoke (CS) plus 2% Lung Chen tea or water by oral gavage. Serine proteases, matrix metalloproteinases (MMPs) and their respective endogenous inhibitors were determined in bronchoalveolar lavage (BAL) and lung tissues by gelatin/casein zymography and biochemical assays. Green tea consumption significantly decreased CS-induced elevation of lung lipid peroxidation marker, malondialdehyde (MDA), and CS-induced up-regulation of neutrophil elastase (NE) concentration and activity along with that ofα(1)-antitrypsin (α(1)-AT) and secretory leukoproteinase inhibitor (SLPI) in BAL and lung. In parallel, significant elevation of MMP-12 activity was found in BAL and lung of the CS-exposed group, which returned to the levels of SA-exposed group after green tea consumption but not CS-induced reduction of tissue inhibitor of metalloproteinase (TIMP)-1 activity, which was not reversed by green tea consumption. Taken together, our data supported the presence of local oxidative stress and protease/anti-protease imbalance in the airways after CS exposure, which might be alleviated by green tea consumption through its biological antioxidant activity.