n/a
Abstract Title:

Isoginkgetin inhibits inflammatory response in the fibroblast-like synoviocytes of rheumatoid arthritis by suppressing matrix metallopeptidase 9 expression.

Abstract Source:

Chem Biol Drug Des. 2022 06 ;99(6):923-929. Epub 2022 Apr 5. PMID: 35353950

Abstract Author(s):

Nan Shao, Zhibo Feng, Nannan Li

Article Affiliation:

Nan Shao

Abstract:

Inflammatory and invasive fibroblast-like synoviocytes (FLS) contribute to the pathology of rheumatoid arthritis (RA). Isoginkgetin (IGKG) has been identified as having anti-inflammatory properties. This study investigated whether IGKG could be utilized to treat RA. Primary FLS were isolated from synovial tissues derived from six RA patients, which were over-expressed with matrix metallopeptidase 9 and cultured with or without tumor necrosis factor (TNF)-α and then further treated with IGKG. IGKG down-regulated the content of various interleukins (ILs), namely, IL-1β, IL-6, and IL-8, in RA-FLS supernatant with or without TNF-α stimulation, with diminished migration and invasion properties as assayed by the transwell system. Furthermore, down-regulated inflammatory cytokine secretion and down-regulated migration and invasion properties could be reversed through matrix metallopeptidase 9 overexpression. Dual-luciferase reporter gene assay indicated that IGKG could inhibit nuclear factor kappa B transcription activity. Western blot analysis also demonstrated that IGKG down-regulated the expression of p-IκBα, p-p65, and MMP9. IGKG displayed the ability to inhibit the inflammatory response of RA-FLS through the NF-κB/MMP9 pathway with diminished migration and invasion.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.