Abstract Title:

Loganin prevents BV-2 microglia cells from Aβ-induced inflammation via regulating TLR4/TRAF6/NF-κB axis.

Abstract Source:

Cell Biol Int. 2018 Dec ;42(12):1632-1642. Epub 2018 Oct 31. PMID: 30288860

Abstract Author(s):

Yong Cui, Yanjie Wang, Danyu Zhao, Xiaofan Feng, Lin Zhang, Chun Liu

Article Affiliation:

Yong Cui


Neuroinflammation is closely related with the pathogenesis and progress of neurodegenerative diseases including Alzheimer's disease (AD). Loganin, an iridoid glycoside obtained from traditional Chinese medicine Cornus officinalis, has properties of inhibiting inflammation and improving memory. The present study was aimed to investigate effects of loganin on Aβ-induced inflammation and to explore the underlying mechanisms. BV-2 microglia cells were stimulated with 10 µM Aβfor 24 h to induce inflammatory damage. According to results of CCK-8 assay, the doses of loganin in present work were 10 and 30 µM. We found that treatment with loganin could inhibit Aβ-induced microglia activation. Furthermore, loganin treatment prevented the over-production of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Macrophage Chemotactic Protein 1(MCP-1), Nitric oxide (NO), Prostaglandin E2 (PGE2) and the up-regulation of inducible nitric oxide synthase (iNOS) and Cyclooxygenase 2 (COX-2) in Aβ-stimulated BV-2 cells. Results from Western blots demonstrated that loganin inhibited Aβ-induced elevation in Toll-like receptor 4 (TLR4), Myeloid Differentiation Factor 88 (MyD88) and TNF receptor-associated factor 6 (TRAF6). Loganin treatment also attenuated the increased phosphorylation level of IRAK4 caused by Aβ. Additionally, loganin alleviated nuclear translocation of NF-κB p65 subunit in Aβ-stimulated BV-2 cells, and this phenomenon could be reversed by TLR4 agonist LPS. Further, the anti-inflammatory effects of loganin were attenuated when TLR4 signaling pathway was re-activated by LPS. Taken together, our data indicated that loganin could attenuate inflammatory response induced by Aβ in BV-2 microglia cells, partially through deactivating the TLR4/TRAF6/NF-κB axis.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.