Abstract Title:

Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish.

Abstract Source:

Environ Pollut. 2020 Apr 5 ;263(Pt B):114535. Epub 2020 Apr 5. PMID: 32283406

Abstract Author(s):

Jingyu Qin, Shaoguo Ru, Weiwei Wang, Liping Hao, Yiran Ru, Jun Wang, Xiaona Zhang

Article Affiliation:

Jingyu Qin


Environmental chemical exposures have been implicated as risk factors for the development of non-alcoholic fatty liver (NAFLD). Bisphenol S (BPS), widely used in multitudinous consumer products, could disrupt lipid metabolism in the liver. This study aimed at examining the hypothesis that long-term exposure to BPS promotes the development of liver fibrosis and inflammation by means of the application of a semi-static exposure experiment that exposed zebrafish to 1, 10, and 100 μg/L BPS from 3 h post fertilization to 120 day post fertilization. Results showed that the 120-d BPS exposure elevated plasma aspartate aminotransferase and alanine aminotransferase activities, increased triacylglycerol (TAG) and total cholesterol levels in male liver, and even induced hepaticapoptosis and fibrosis. Hepatic lipid accumulation observed in the 30-d BPS-exposed zebrafish was recovered after a 90-d depuration phase, thereby indicating that long-term BPS exposure promotes the progression of simple steatosis to non-alcoholic steatohepatitis. Furthermore, BPS exposure for 120-dpromoted the synthesis of TAG and lipotoxic free fatty acids by elevating the transcription of srebp1, acc, fasn, and elovl6, induced endoplasmic reticulum (ER) stress with increasing expression levels of unfolded protein response (UPR) genes (perk, hsp5, atf4a, and ddit3), and then stimulated theexpression of two key autophagy genes (atg3 and lc3) and inflammatory genes (il1b and tnfα). It is indicated that BPS can induce the development of steatohepatitis via the activation of the PERK-ATF4a pathway of the UPR. Data gathered suggest that environmental pollutants-induced ER stress with theactivation of UPR can potentially trigger the NAFLD development in males. Overall, our study provided new sights into understanding of the adverse health effects of metabolism disrupting chemicals.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.