n/a
Article Publish Status: FREE
Abstract Title:

Low-molecular-weight fucoidan attenuates bleomycin-induced pulmonary fibrosis: possible role in inhibiting TGF-β1-induced epithelial-mesenchymal transition through ERK pathway.

Abstract Source:

Am J Transl Res. 2019 ;11(4):2590-2602. Epub 2019 Apr 15. PMID: 31105865

Abstract Author(s):

Lu Wang, Pan Zhang, Xinpeng Li, Yi Zhang, Qingyuan Zhan, Chen Wang

Article Affiliation:

Lu Wang

Abstract:

The therapeutic options for pulmonary fibrosis (PF), a progressive interstitial disease of the lung, are extremely limited. Studies have shown that transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) functions as a central mediating process that contributes to PF. Also, low-molecular-weight fucoidan (LMWF), a sulfated polysaccharide extracted from brown seaweed, has been reported to have antifibrotic characteristics that can help to alleviate kidney fibrosis by inhibiting TGF-β1-mediated EMT. Thus we hypothesized that LMWF might be an attractive candidate for alleviating PF. Eighty C57BL/6 mice and A549 cells were respectively involved in our vivo and vitro experiments. The lung fibrosis was primarily assessed by hematoxylin and eosin (H&E), Masson's trichrome stain, lung wet-to-dry weight ratio and hydroxyproline content. TGF-β1 levels were determined by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence, and the expression of EMT markers and extracellular signal-regulated kinase (ERK) signaling were mainly based on immunostaining, real-time PCR and Western blot. As expected, our vivo models showed that LMWF was associated with improved lung fibrotic histopathology and significantly reduced lung hydroxyproline content. Levels of TGF-β1 expression in bronchoalveolar lavage fluid (BALF) and lung tissue decreased than it had been before treatment. Immunostaining, real-time PCR, and Western blot demonstrated that the lung EMT phenotype was attenuated and ERK signaling downregulated after LMWF administration. The vitro experiments resulted in a similar pharmacologic inhibitory effect of TGF-β1-induced EMT with downregulated ERK signaling. Collectively, our results preliminary suggested that LMWF could attenuate bleomycin-induced PF by inhibiting TGF-β1-induced EMT through ERK signaling.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.