Abstract Title:

Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines.

Abstract Source:

Carcinogenesis. 2010 Oct;31(10):1813-21. Epub 2010 Aug 10. PMID: 20699249

Abstract Author(s):

Paola Palozza, Maria Colangelo, Rossella Simone, Assunta Catalano, Alma Boninsegna, Paola Lanza, Giovanni Monego, Franco O Ranelletti

Article Affiliation:

Institute of General Pathology, Catholic University School of Medicine, L. Go F. Vito, 00168 Rome, Italy. [email protected]

Abstract:

Several evidences suggest that cancer cells have abnormal cholesterol biosynthetic pathways and prenylation of small guanosine triphosphatase proteins. Tomato lycopene has been suggested to have beneficial effects against certain types of cancer, including that of prostate, although the exact molecular mechanism(s) is unknown. We tested the hypothesis that lycopene may exert its antitumor effects through changes in mevalonate pathway and in Ras activation. Incubation of the Ras-activated prostatic carcinoma LNCaP cells with a 24 h lycopene treatment (2.5-10μM) dose dependently reduced intracellular total cholesterol by decreasing 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase expression and by inactivating Ras, as evidenced by its translocation from cell membranes to cytosol. Concomitantly, lycopene reduced the Ras-dependent activation ofnuclear factor-kappaB (NF-κB). Such a reduction was parallel to an inhibition of reactive oxygen species production and to a decrease in the phosphorylation ofc-jun N-terminal kinase, extracellular signal-regulated kinase 1/2 and p38. These effects were also accompanied by an arrest of cell cycle progression and by apoptosis induction, as evidenced by a decrease in cyclin D1 and phospho-AKT levels and by an increase in p21, p27 and p53 levels and in Bax:Bcl-2 ratio. The addition of mevalonate prevented the growth-inhibitory effects of lycopene as well as its increase in Ras cytoplasmatic accumulation and the subsequent changes in NF-κB. The ability of lycopene in inhibiting HMG-CoA reductase expression and cell growth and in inactivating Ras was also found in prostate PC-3, colon HCT-116 and HT-29 and lung BEN cancer cells. These findings provide a novel mechanistic insight into the growth-inhibitory effects of lycopene in cancer.

Print Options


This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.