Abstract Title:

Magnolia officinalis reduces the long-term effects of the status epilepticus induced by kainic acid in immature rats.

Abstract Source:

Brain Res Bull. 2019 Jul ;149:156-167. Epub 2019 Apr 9. PMID: 30978383

Abstract Author(s):

A Vega-García, C E Santana-Gómez, L Rocha, V M Magdaleno-Madrigal, A Morales-Otal, V Buzoianu-Anguiano, I Feria-Romero, S Orozco-Suárez

Article Affiliation:

A Vega-García


During critical periods of neurodevelopment, the immature brain is susceptible to neuronal hyperexcitability, alterations such as hyperthermia, hypoxia, brain trauma or a preexisting neuroinflammatory condition can trigger, promote and prolong epileptiform activity and facilitate the development of epilepsy. The goal of the present study was to evaluate the long-term neuroprotective effects Magnolia officinalis extract, on a model of recurrent status epilepticus (SE) in immature rats. Sprague-Dawley rats were treated with kainic acid (KA) (3 mg/kg, dissolved in saline solution) beginning at day 10 P N every 24 h for five days (10 P N-14PN). Two experimental groups (KA) received two treatments for 10 days (14-24 P N): one group was treated with 300 mg/kg Magnolia Officinalis (MO) (KA-MO), and another was treated with 20 mg/kg of celecoxib (Clbx) (KA-Clbx) as a control drug. A SHAM control group at day 90 P N was established. Seizure susceptibility was analyzed through an after-discharge threshold (ADT) evaluation, and electroencephalographic activity was recorded. The results obtained from the ADT evaluation and the analysis of the electroencephalographic activity under basal conditions showed that the MO and Clbx treatments protected against epileptiform activity, and decreases long-term excitability. All rats in the KA-MO and KA-Clbx groups presented a phase I seizure on the Racine scale, corresponding to the shaking of a wet dog. In contrast, the KA group showed phase V convulsive activity on the Racine scale. Similarly, MO and Clbx exerted neuroprotective effects on hippocampal neurons and reduced gliosis in the same areas. Based on these results, early intervention with MO and Clbx treatments to prevent the inflammatory activity derived from SE in early phases of neurodevelopment exerts neuroprotective effects on epileptogenesis in adult stages.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.