n/a
Abstract Title:

Suppression of PKCδ/NF-κB Signaling and Apoptosis Induction through Extrinsic/Intrinsic Pathways Are Associated Magnolol-Inhibited Tumor Progression in Colorectal Cancer In Vitro and In Vivo.

Abstract Source:

Int J Mol Sci. 2020 May 16 ;21(10). Epub 2020 May 16. PMID: 32429376

Abstract Author(s):

Chun-Min Su, Yueh-Shan Weng, Lin-Yen Kuan, Jiann-Hwa Chen, Fei-Ting Hsu

Article Affiliation:

Chun-Min Su

Abstract:

Magnolol is one of the hydroxylated biphenyl compounds from the root and stem bark of, which shown to possess anti-colorectal cancer (CRC) effects. However, the regulatory mechanism of magnolol on apoptosis and NF-κB signaling in human CRC has not been elucidated. Thus, we investigated the inhibitory mechanism of magnolol on human and mouse CRC (HT-29 and CT-26) in vitro and in vivo. Results from reporter gene assay indicated that both magnolol and rottlerin (PKCδ inhibitor) reduced the endogenous NF-κB activity. In addition, indolactam V (PKCδ activator)-induced NF-κB signaling was significantly suppressed with both magnolol and rottlerin treatment. Results from Western blotting also indicated that phosphorylation of PKCδ and NF-κB -related proteins involved in tumor progression were effectivelydecreased by magnolol treatment. The invasion capacity of CRC cells was also attenuated by both magnolol and rottlerin. Furthermore, magnolol triggered Fas/Fas-L mediated extrinsic apoptosis and mitochondria mediated intrinsic apoptosis were validated by flow cytometry. Most importantly, tumor growth in both HT-29 and CT-26 bearing mice were suppressed by magnolol, but no pathologic change was detected in mice kidney, spleen, and liver. As confirmed by immunohistochemistry (IHC) staining from tumor tissue, PKCδ/NF-κB signaling and downstream proteins expression were decreased, while apoptotic proteins expression was increased in the magnolol treated group. According to these results, we suggest that the induction of apoptosis through extrinsic/intrinsic pathways and the blockage of PKCδ/NF-κB signaling are associated with the magnolol-inhibited progression of CRC.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.